
 
 

  

 

 

SCIENTIFIC VISUALIZATION OF N-DIMENSIONAL ATTAINABLE REGIONS 

 

 

 
 
 
 
 
 
 
 
 
 
 

BY 

THOMAS PETERKA 
B.S., University of Illinois at Chicago, 1987 

 

 

 

 

 

 

 

 

THESIS 

Submitted as partial fulfillment of the requirements 
for the degree of Master of Science in Computer Science 

in the Graduate College of the 
University of Illinois at Chicago, 2003 

 

Chicago, Illinois



 
 

  

This thesis is dedicated to Melinda, Chris, and Amanda, whose unwavering support and 

encouragement helped make a distant dream become a reality. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

iii



 
 

  

ACKNOWLEDGEMENTS 
 
 
I would like to thank the following people individually for their contributions to this work.  Some are 

thesis committee members, others collaborators in one form or another.  All were instrumental to the 

success of this thesis and I am deeply indebted to them. 

 

• Andrew Johnson of the Electronic Visualization Laboratory (EVL), University of Illinois at Chicago 

(UIC) for helpful feedback and review of the thesis 

• Jason Leigh, EVL, UIC for continued support and helpful input 

• John Bell, lecturer, UIC. Dr. Bell tirelessly reviewed weekly progress, arranged collaborations, and 

was instrumental in the success of this work from start to finish.  His enthusiasm, involvement, and 

high expectations helped this thesis become a truly meaningful endeavor. 

• Peter Nelson, CS department head, UIC, for ongoing overseeing of the work 

• Tumisang Seodigeng, researcher, Center of Process and Material Synthesis, School of Process 

and Materials Engineering, University of Witwatersrand, Johannesburg, South Africa. Mr. 

Seodigeng was most helpful with the second sample problem, and was our collaborator in the field 

doing actual AR research.  I am thankful not only for his data set, but for the invaluable feedback 

as well.   

• David Glasser, and Brendon Hausberger of the University of Witwatersrand, Johannesburg, South 

Africa also for their collaboration on the second sample problem.  

• Ken Clarkson, researcher, Bell Labs, Murray Hill, New Jersey. Mr. Clarkson generously provided 

an open-source application for computing convex hulls in general numbers of dimensions. His 

code was very reliable, and it played a valuable role in the visualization of the second sample 

problem. 

 

 

 

TP 

iv 

 



 
 

  

TABLE OF CONTENTS 
 
CHAPTER                                                                                                                                        PAGE 
            

1.  INTRODUCTION ....................................................................................................... 1   
 
2.  BACKGROUND ......................................................................................................... 5 
 2.1  Computer Graphics and Virtual Reality......................................................... 5 
 2.1.1  CAVE ............................................................................................................ 6 
 2.1.2  Tiled Displays ............................................................................................... 7 
 2.1.3  Auto-Stereoscopic Displays ......................................................................... 9 
 2.1.4  Desktop Displays ....................................................................................... 10 
 2.2  User Interface Design ................................................................................ 11 
 2.2.1  Transparency .............................................................................................. 11 
 2.2.2  Direct Manipulation .................................................................................... 12 
 2.2.3  Building Tools.............................................................................................. 12 
 2.2.4  Color ........................................................................................................... 15 
 2.2.5  Testing and Evaluation ............................................................................... 16 
 2.3  Scientific Visualization ................................................................................ 18 
 2.3.1  General Principles ...................................................................................... 18 
 2.3.2  Multivariate Visualization ............................................................................ 20 
 2.3.3  Dimensional Attributes ............................................................................... 20 
 2.3.4  Animation ................................................................................................... 21 
 2.3.5  Dimension Reduction ................................................................................. 22 
 2.3.6  Coordinates and Coordinate Systems ....................................................... 23 
 2.3.7  Dimensionality ............................................................................................ 25 
 2.3.8  Convex Hulls .............................................................................................. 27 
 2.4  Attainable Regions ...................................................................................... 29 
 2.4.1  Attainable Region Theory ........................................................................... 31 
 2.4.2  Terminology and Definitions ....................................................................... 32 
 2.4.3  Fundamental Reactor Types and Operations ............................................ 32 
 2.4.4  Properties of the Attainable Region ........................................................... 37 
 2.4.5  Features of the Attainable Region ............................................................. 38 
 2.4.6  Current Attainable Region Visualizations.................................................... 39 

 
3.  APPLICATION DEVELOPMENT ............................................................................ 42 
 3.1 Introduction ................................................................................................. 42 
 3.2  Platforms .................................................................................................... 44 
 3.3  N-Dimensional Architecture ....................................................................... 47 
 3.4  Data File Format ........................................................................................ 49 
 3.5 Tetrahedral Coordinates ............................................................................ 51 
 3.6  Dimension Reduction .................................................................................. 52 
 3.6.1  User Interface.............................................................................................. 52 
 3.6.2  Relationship to Attainable Region Properties ............................................ 54 
 3.7  Convex Hulls Revisited ............................................................................... 57 
 3.7.1  View-Based 3-d Convex Hull ..................................................................... 57 
 3.7.2  General n-d Full Convex Hull ..................................................................... 58 
 3.8  Surface Rendering ..................................................................................... 60 
 3.9  Lighting ....................................................................................................... 64 
 3.10  Data Probing .............................................................................................. 66 
 3.10.1  Probing Points and Curves ........................................................................ 66 
 3.10.2  Probing Surfaces ........................................................................................ 67 
 3.10.3  Labeling ...................................................................................................... 69 
 3.11  Grid Scale Values ....................................................................................... 72 
 

 
 
v



 
 

  

TABLE OF CONTENTS (continued) 
 

CHAPTER                                                                                                                                      PAGE 
 
4.  SAMPLE PROBLEM 1............................................................................................. 74 
 4.1  Equations and Rate Laws .......................................................................... 74 
 4.2  Results ....................................................................................................... 75 
 
5.  SAMPLE PROBLEM 2 ............................................................................................ 78 
 
6.  CONCLUSION ........................................................................................................ 83 
 6.1  Summary .................................................................................................... 83 
 6.2  Accomplishments ....................................................................................... 84 
 6.3  Future Work ................................................................................................ 85 
  
 CITED LITERATURE .............................................................................................. 87 
 
 APPENDICES ......................................................................................................... 90 
 Appendix A .............................................................................................................. 90 
 Appendix B .............................................................................................................. 95 
 Appendix C ........................................................................................................... 101 
 Appendix D ........................................................................................................... 104 
 
 VITA .................................................................................................................. 109 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

vi



 
 

  

LIST OF TABLES 
 
TABLE                                                                                                                                             PAGE 

 
I.  SURVEY OF AR LITERATURE ................................................................................................. 41 
II.          MAJOR CONTRIBUTIONS AND OTHER ACCOMPLISHMENTS ............................................ 85 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

vii



 
 

  

LIST OF FIGURES 
 
FIGURE                                                                                                                                           PAGE 

 
 
1.  Sample process flowchart ............................................................................................................. 2 
2.  CAVE architecture........................................................................................................................ 7 
3.  Tiled LCD display .......................................................................................................................... 8 
4.  Tiled projector display ................................................................................................................... 8 
5.  Auto-stereo 4-panel display ........................................................................................................ 10 
6.  Basic window elements ............................................................................................................... 13 
7.  Examples of dialog boxes ........................................................................................................... 14 
8.  Help system ................................................................................................................................ 14 
9.  Use of color as an identification tool ........................................................................................... 16 
10.  Daily weather map ...................................................................................................................... 20 
11.   Air quality visualization ................................................................................................................ 21 
12.  Ternary diagram.......................................................................................................................... 24 
13.  Tetrahedral coordinates .............................................................................................................. 25 
14.  Non-ideal reactor represented using ideal models...................................................................... 29 
15.  Modern chemical plant ................................................................................................................ 30 
16.  Plug flow reactor ......................................................................................................................... 33 
17.  Differential side-stream reactor ................................................................................................... 34 
18.  Continuous stirred tank reactor ................................................................................................... 35 
19.  Mixing.......................................................................................................................................... 36 
20.  Curved and ruled surfaces .......................................................................................................... 38 
21.   Data structure for storing n-d points ............................................................................................ 47 
22.   MVC model ................................................................................................................................. 48 
23.   Program structure ....................................................................................................................... 48 
24.   Collaborative approach to visualization....................................................................................... 49 
25.   4-d tetrahedral view..................................................................................................................... 51 
26.   Coordinate system properties ..................................................................................................... 53 
27.  Triangulating between two curves............................................................................................... 60 
28.  Regular and skewed triangles..................................................................................................... 61 
29.  Good and bad triangulations ....................................................................................................... 63 
30.  Interpolating probed data ............................................................................................................ 69 
31.  Use of labels ............................................................................................................................... 71 
32.  Scale values dialog box .............................................................................................................. 72 
33.  Sample problem 1 results ........................................................................................................... 75 
34.  Sample problem 1 tetrahedral view............................................................................................. 76 
35.  Tetrahedral view of sample problem 2 ........................................................................................ 79 
36.  Tetrahedral view with visible convex hull .................................................................................... 80 
37.  Tetrahedral view with trace amounts of component E ................................................................ 81 
38.  Orthogonal view of B,C,D............................................................................................................ 81 
 

 
 
 
 
 
 
 
 
 
 
 
 

viii



 
 

  

LIST OF ABBREVIATIONS 
 

 

2-d, 3-d, 4-d, n-d 2-dimensional, 3-dimensional, 4-dimensional, n-dimensional 

AR   attainable region 

CAVE   CAVE Automatic Virtual Environment 

CG   computer graphics 

CRT   cathode ray tube 

CSTR   continuous stirred tank reactor 

DSR   differential side stream reactor 

EVL   Electronic Visualization Laboratory 

GUI   graphical user interface 

LCD   liquid crystal display 

MFC   Microsoft Foundation Classes 

MVC   model view controller 

PC   personal computer 

PFR   plug flow reactor 

RAM   random access memory 

UIC   University of Illinois at Chicago 

VR   virtual reality 

 

 

 

 

 

 

 

 

 

ix



 
 

  

SUMMARY 

 

     The attainable region (AR) is a graphical method for solving chemical reactor synthesis problems.  

Geometrically, it is a closed convex solid in n-dimensional space and it represents the solution space 

of all possible combinations of concentrations that can be produced by a given chemical system, 

starting with a given feed stock. Even though a set of unit operations can be combined in an infinite 

number of ways through series, parallel, bypass and looping, all possible resulting concentrations are 

contained in the AR. The number of dimensions of the space, n, is the same as the number of 

components in the chemical system. 

 

     AR is a field currently being studied by several teams of researchers in selected institutions 

worldwide. A survey of their literature together with collaboration with one group from the University of 

Witwatersrand in South Africa reveals that scientific visualization of AR results becomes increasingly 

difficult as ARs reach higher dimensions. Generic visualization tools with limited dimensional capability 

have proved inadequate.  A scientific visualization tool specifically designed for AR data with the 

capability to dynamically select subsets of dimensions as well as the ability to view all n dimensions 

simultaneously is needed. 

      

     In this thesis, thorough background research in AR is performed, the current state of AR 

visualization is assessed, and then an application is developed for scientific visualization of n-

dimensional (n-d) AR data. Principles of interactive computer graphics, virtual reality, user interface 

design, and multivariate scientific visualization are employed in a real-time viewer capable of reading 

n-d AR input data and selectively producing various views via dimension reduction, tetrahedral 

coordinates, convex hull generation, and a standard input file format.  

 

     Other program features include interactive data probing, coordinate system controls, real-time 

viewing  transformations,  and  a  functional  user interface.   The application is a freely available open- 
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SUMMARY (continued) 

 

source program that runs on most personal computers (PCs) under most versions of the Windows 

operating systems. Virtual reality devices such as the CAVE, tiled display, and auto-stereoscopic 

display have been examined as part of the background study, and feasibility for future migration of the 

application to these devices is assessed. 

 

     Two sample problems are documented, the first theoretical and the second an actual data set from 

current AR research. Collaboration with researchers has helped the application to evolve, and the 

program and results have been shared to help guide researchers in further studies. Preliminary 

feedback from collaborators has been positive. The overall contribution of this thesis is to provide an 

interactive visualization tool for n-d ARs, which is needed to help AR research move to higher 

dimensions. 
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1. INTRODUCTION 

 

     Chemical engineering, like other engineering disciplines, often relies on graphical methods for 

solving complex problems.  This works well for “textbook” problems, but unfortunately graphical 

methods are difficult to apply to many "real" problems because they are often much more complex.  

The increased complexity is due to increased number of variables, ie. larger dimensional space.  For 

example, sample graphical problems are usually two-dimensional, while real problems may contain 5 

or 10 variables.  However, graphical solutions offer advantages over other numerical methods 

because of the visual perception of the human mind, so graphical solutions for multivariate problems 

are desirable. While it is difficult to visualize high dimensional data, a good visualization will reward the 

engineer with extremely comprehensible results. 

 

     One such graphical method in chemical engineering is called "attainable regions", or AR.  This is a 

geometric representation of the solution space of all possible combinations of selected unit operations 

for a system of chemical reactions, starting from a given feed point.  The chemical engineer desires to 

find an optimal flowchart combination of reactors and mixers to optimize some objective function, such 

as production of a desired component, and the first step in this optimization process is to determine 

what compositions are feasible, or attainable.  The attainable region is a convex closed solid in n-

dimensional space, where n is the number of components in the chemical system. 

 

     The following example will serve to introduce ARs, especially to those readers with backgrounds 

other than in the field of chemical engineering. Suppose that an engineer is charged with the task of 

designing a new chemical plant consisting of a set of chemical reactors and mixers to operate on 

some given chemical system such as below. (van de Vusse, 1964)  

 

A1 ! A2 

A2 ! A4 

2A1 ! A3 
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      Usually the goal is to maximize some objective function, for example maximizing production of A4 

while minimizing the number of reactors used. The engineer also has a set of fundamental operations 

to choose from. In this thesis, 4 ideal operations are considered: 3 types of reactors and bulk mixing. 

Each of these can be described by an ideal model governed by a differential or algebraic equation.   

The difficulty lies in the fact that the unit operations can be combined in an infinite number of ways 

using series, parallel, bypass, looping, etc. For example, Figure 1 below shows a small flowchart of 

several reactors connected together. 

 

 

 

 

 

 

 

 

 

Figure 1. Sample process flowchart 

 

     Since the number of combinations of processes is infinite, the engineer has two choices.  Either he 

may reduce the number of possibilities by applying heuristics, rules of thumb, or historical experience, 

or apply a more systematic scientific method.  Obviously the latter is preferred, and ARs provide this 

method.  The AR is easy to visualize when the number of dimensions is small, say two or three, but 

difficult to visualize when higher dimensions are used.  Not surprisingly, it is just these high-

dimensional (high-d)  ARs that occur in real-life chemical engineering situations, as opposed to low-d 

“textbook” examples.   
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     A survey of AR literature reveals that the current state of AR visualization follows two patterns. 

Either the number of variables visualized is reduced (for example from 5 down to 2 or 3), or high-d 

results produced by numerical methods may not be visualized at all. (See Section 2.4.6 for more 

details.)  The whole basis for the AR method first invented by Horn (Horn, 1964) is to see the space of 

all possibilities, which then can lead to rational optimization paths.  A useful n-d visualization tool 

specifically designed for AR data can eliminate the necessity to discard variables, and provide a 

visualization of data where there was none before. 

 

     A collaboration was formed with a key research group currently pursuing the study of high-d ARs.  

A working partnership with the University of Witwatersrand, in Johannesburg, South Africa was begun 

and a need was discovered for high-d visualization of AR results. A scientific visualization program 

was developed as part of this thesis work which can interactively produce views based on dimension 

reduction, tetrahedral coordinates, and convex hull generation.  Other features include data probing, 

real-time viewing transformations, and a functional user interface including online help. Through the 

use of a standard file format (also developed as part of this thesis), researchers are able to focus on 

what they do best, simulating and producing data sets, freeing them from developing visualization 

methods. 

 

     Two sample problems were tested, 4-dimensional and 5-dimensional, and the application is 

designed to accept even larger problem spaces. Concepts from several different disciplines are 

employed, from chemical engineering, scientific visualization, and computer science. Chemical 

engineering provides the basis for the AR method of modeling reactor synthesis, while concepts from 

the study of scientific visualization to graphically represent high-d data are utilized to maximize 

comprehension.  Finally, several topics in computer science are explored to develop the computer 

application that serves as the visualization tool, such as 3-d computer graphics, virtual reality, and 

user interface design. 
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     The following is a list of specific enhancements or additions that this thesis contributes to the 

current state of AR visualization.  The following chapters provide background and detail as to how this 

was accomplished. 

 

• Providing an interactive AR-specific visualization tool capable of maintaining all dimensions of a 

problem space and selectively displaying a subset of dimensions under various settings as well 

as displaying all dimensions simultaneously if desired 

• Applying the tetrahedral coordinate system to AR visualization, which does not appear in any AR 

literature as yet but is a useful display paradigm for chemical engineers and researchers 

• Using n-d and 3-d convex hulls to view disorganized data sets and to filter extraneous data from 

large data sets prior to viewing, allowing these data to be viewed as well 

• Developing a standard file format for the transmission of data sets between simulation programs 

and the visualization, enhancing communication of results between research organizations



 
5 

2. BACKGROUND 

 

     A synthesis of concepts from the studies of AR, scientific visualization, and computer science form 

the background material for the thesis. Computer science topics include a discussion of computer 

graphics, virtual reality, and user interface design. Scientific visualization, specifically multivariate 

visualization is explored in order to display higher numbers of dimensions within a limited dimensional 

space. ARs are researched in order to understand AR theory, properties and features of the AR, and 

the current state of visualization in this domain. 

 

2.1    Computer Graphics and Virtual Reality 

 

     3d computer graphics (CG) is the rendering of objects in three-dimensional world-space onto a two-

dimensional computer display device; typical applications are computer aided design, user interfaces, 

games, and artistic expression. Virtual reality (VR) is an extension of 3d computer graphics through 

specialized software and hardware for the purpose of creating a sense of immersion in the computer 

application.  The list of applications suitable for VR is similar those for CG.  Sherman and Craig define 

VR as: “a medium composed of interactive computer simulations that sense the participant’s position 

and actions or augment the feedback to one or more senses, giving the feeling of being mentally 

immersed or present in the simulation (a virtual world).” (Sherman and Craig, 2003)   

     This is a specific textbook definition that also enumerates some key ingredients of VR, namely 

position tracking, sensory feedback, and immersion. CG and VR are considered together in this thesis 

as they relate to scientific visualization with the aim of maximizing data comprehension.  What follows 

is a very brief introduction to some common CG/VR display devices and systems as they relate to the 

AR visualization.  Some devices such as the CAVE are where the work began, others such as laptops 

and PCs are the current platform, and still others such as tiled displays and auto-stereo displays are 

the future intended targets for the AR work.  
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2.1.1  CAVE 

 

     The CAVE, or CAVE Automatic Virtual Environment, was invented at the Electronic Visualization 

Laboratory (EVL) at the University of Illinois at Chicago (UIC) in 1992. (Cruz-Neira et al., 1992) It is a 

10-foot x 10-foot x 10-foot cube in which several participants can stand simultaneously.  Viewers are 

surrounded by three walls of rear-projection screens, and together with the floor, this constitutes four 

surfaces onto which images are seamlessly projected through the use of high quality projectors and  

mirrors.  Images are projected in field-sequential stereo, meaning that images alternate between left 

and right eyes through the use of synchronized LCD shutter glasses to create a stunning 3d effect.  

One viewer’s position is tracked through an ultrasonic tracking system, and the viewpoint is updated in 

real-time to maintain first-person perspective.  Finally, a high quality sound system is included.  

 

     For over ten years, the CAVE has represented the state-of-the-art in high-end VR technology. The 

CAVE was the first choice for the AR visualization because of the 3d stereoscopic immersive 

experience it provides.  It was thought that such high-end VR equipment would enhance the viewing of 

high-d data. In Section 3.2, it will be shown that this assumption was not necessarily true, and actually 

the CAVE had some drawbacks that ultimately resulting in the use of other devices. Figure 2 below 

appears on the EVL web site (EVL, 2003) and diagrams the CAVE architecture of screens, mirrors, 

and projectors. 
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Figure 2. CAVE architecture (image courtesy of EVL) 

 

2.1.2  Tiled Displays 

 

     For years, VR technology was primarily either projection-based or head-based.  Only recently has a 

third display option emerged: tiled.  A tiled display is a matrix of smaller individual displays, driven by a 

cluster of PCs, and  assembled to make a large-size, high resolution, high brightness, wide field of 

view display.  The individual components can be either liquid-crystal display panels (LCDs) or 

projectors.  EVL at UIC has been one of the innovators of the LCD tiled display, with their “Perspectile” 

model. (JuxtaView, 2002).  Shown below, the system displays a total resolution of approximately 

6000x3000 pixels and enables researchers to quickly pan and zoom through very large data sets, 

often terabytes in size.  Also, not all of the tiles need to show parts of the same image, so that several 

applications or several views of a data set can be viewed simultaneously. All of the above features 

make tiled displays a likely future candidate for scientific visualization such as the AR work.  
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Figure 3. Tiled LCD display (image courtesy of EVL) 

 

     Another variety of tiled display uses a collection of projectors to form an even larger viewing space 

for research, presentation, or educational purposes.  This is the approach taken at Vrije Universteit in 

the “ICWall” tiled display, composed of eight projectors.  (Renambot and van der Schaaf, 2003)   Each  

tiled  method  has   its  pros  and  cons.   The LCD display is relatively portable and economical, but 

suffers from the borders that surround each tile, or mullions.  The projector display is large and 

relatively seamless, but requires a dedicated space and permanent installation. Figure 4 below is used 

with permission from Luc Renambot. (Renambot and van der Schaaf, 2003) 

 

 

 

 

 

 

 

 

 

Figure 4. Tiled projector display (image courtesy of Luc Renambot) 

 

2.1.3  Auto-Stereoscopic Displays 
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     One of the drawbacks of current VR technology is the need for various encumbrances that the user 

must wear in order to achieve effects such as tracking and stereo vision.  Head mounted displays, 

tethered tracking devices, LCD shutter glasses, even passive stereo red-blue filter glasses are all 

examples of such paraphernalia that are still required today to create a feeling of immersion and a 

sense of presence in virtual worlds.  Unfortunately, these items can be uncomfortable, restrictive, and 

detracting from the experience, especially after long periods of use. VR researchers have long been 

dreaming of a system where a user simply walks up to a display and is presented with stereo sights 

and sounds, totally unencumbered by additional devices. 

     In recent years, one of the research projects at EVL has been the development of the “Varrier” 

display, an auto-stereo display based on physical and virtual barrier strip technology. (Sandin et al.,  

2001)   Present development is underway for a 4-panel system, although future plans are to 

incorporate the Varrier technology on a larger tiled display such as the Perspectile 15-panel system 

mentioned earlier.  Concurrently, EVL is also conducting research in camera-based head tracking, so 

that the system can know the user’s position at all times without having to wear a tracking device.  In 

the photograph below, the researcher is still are wearing a head-tracker mounted on a headband, but 

the overall goal is the permanent elimination of all such impediments. Varrier is also a likely candidate 

for future AR visualization, because of the active stereo feature and the multi-panel capability of 

displaying several views simultaneously.  While it offers wide field of view, the system suffers from 

lower resolution and brightness due to the physical linescreens covering the panels.  Artifacts such as 

ghosting also are still a problem, but are being reduced through ongoing development. 
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Figure 5. Auto-stereo 4-panel display 

 

2.1.4  Desktop Displays 

 

     Finally, one should not overlook the most ubiquitous graphics display, the common everyday PC 

desktop or laptop CRT or LCD display. Sometimes called “fishtank” VR, it is possible to produce a 

tracked, stereo VR experience on an ordinary desktop computer monitor, although it is uncommon to 

expend the additional effort for such a small display.  What is common however, is simply displaying 

3d computer graphics applications driven by commodity PC graphics cards on an ordinary monitor, 

without any extra effort.  Most computer users do this everyday without giving it a second thought 

when using graphical user interfaces or running computer games.  One can hardly call this VR, but 

considering the relative numbers and costs of PCs compared to CAVEs or other dedicated equipment, 

the obvious conclusion cannot be ignored. The PC monitor is the predominant computer graphics 

display media, especially since it can easily be coupled with a projector for wall-sized displays and 

presentations. This became one of the major factors in the choice of current application platforms for 

this work. 
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2.2  User Interface Design 

 

     User interface design is the study of developing applications to be usable by other people than just 

the author of the program. As Andrew Johnson writes, “Making a program work for you is pretty easy. 

Making it work for another user is much harder.” (Johnson, 2002) User interfaces are not limited only 

to computer applications either; they are all around us in everyday life as well, (Norman, 1988) but this 

discussion will be limited to a brief summary of “user centered design” as it pertains to this 

visualization.  It is interesting to note that some of the goals of interface design are similar to those of 

scientific visualization.  In a broad sense, the visualization is an interface to the underlying data, much 

the same way as widgets and controls are an interface to a computer application.   

 

      The following is a brief outline of some of the guiding principles of user centered interface design, 

especially as they pertain to the application in question. This section is condensed from an entire 

semester-long course, and the interested reader is encouraged to consult any number of user 

interface texts, such as Schneiderman. (Schneiderman, 1998) 

 

2.2.1  Transparency 

 

     The first and probably most important characteristic of a good user interface is transparency. In 

other words, the best interfaces are the ones the user never sees.  In a perfect world, the user 

concentrates only on the task at hand, in this case the attainable region, and never thinks about which 

menu item or dialog box is needed or where that option is documented in the online help. Such a 

perfect application has yet to be developed, but every now and then some individual feature is 

implemented well, and its use becomes transparent.  
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2.2.2  Direct Manipulation 

 

     A closely related concept is direct manipulation.  The more directly an action can be done, the more 

transparent it will become.  In this context, the word “direct” means simple, concise, or most closely 

affording the intended result.  This is what makes the “drag-and-drop” metaphor so attractive in 

windows desktop systems, for example dragging a file icon to the trash icon in order to delete it.  A 

distinguishing feature of direct manipulation is direct feedback, much like the way a car is driven.  One 

does not think, “I will now turn the steering wheel 35 degrees to the right.”  Rather, the driver turns the 

wheel slightly and the result is immediately sensed. Then the driver turns more, etc., performing a 

rapid series of incremental motions and adjustments while the task is smoothly executed.  When direct 

manipulation occurs so easily that it requires little or no conscious thought, it again becomes 

transparent. 

 

     Navigation within the AR visualization is designed with this in mind.  Real-time panning, zooming, 

and rotating are accomplished using the wand in the CAVE version and the mouse in the PC version.  

In the CAVE, the user points the wand in the desired direction of travel and manipulates the joystick or 

trackball to control the speed of the motion. In the PC version, dragging the mouse with the right 

mouse button depressed along with shift and control keys accomplishes the same result.   Both 

methods are easy to learn, and become transparent quickly.  Both offer direct manipulation and 

feedback, with sensitive speed control. 

 

2.2.3  Building Tools 

 

     Microsoft foundation classes (MFC) within the Visual C++ environment provide tools for 

constructing standard window controls such as menus, dialog boxes, toolbar buttons, and icons in an 

application.  There are other similar tools and libraries such as Borland C++ Builder, FLTK for Linux, 

but the choice of particular tool is not the point. The idea is that the use of building tools is necessary 



13 
 
 

  

in modern user interface development. It affords rapid prototyping and the resulting interface is 

uniform across the application and similar to other applications the user is already accustomed to.  

What follows are a few examples of how a building tool such as MFC helped standardize the AR 

visualization. 

 

Window controls, menus, toolbar, icons 

     Included are standard drag-able title bar, minimize, maximize, close buttons, and re-sizable 

borders. A status bar appears at the bottom with several panes to display file name and useful 

messages. The main menu is straightforward with only two levels of depth, and a toolbar appears 

below the menu with several icons for the common menu operations. See Figure 6 below. 

 

 

 

 

 

 

 

 

 

 

Figure 6. Basic window elements 

 

Dialog boxes 

     Dialog boxes are used to display information and to receive user input, as in the setting of various 

options. The dialog shown below at left is the opening “splash” screen when the application starts up, 

and is also used as the “help | about” screen. On the right is the scale values dialog box, an example 

of a dialog used to set user options. 
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Figure 7. Examples of dialog boxes 

 

Help 

     A help system is included with documentation on all menu items and dialog box controls.  It also is 

standardized to look and function like the help systems from other Windows applications with which 

the user may already be familiar.  It includes contents, an index, and a search command. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Help system 
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2.2.4  Color 

 

     The effective use of color can be a tricky business. In a word processor or spreadsheet, color is 

often used only as a highlighting mechanism, so it is easy to be conservative and use only 2 or 3 

colors total. Other applications, especially scientific visualization, require a broad color spectrum 

because color often conveys additional information such as an extra variable. (Nielson et al., 1997) 

Unfortunately, color is also easy to misuse, resulting in color combinations that are difficult to see (eg. 

red next to blue), unwanted meanings, or just plain unsightly displays. The opposite extreme is equally 

bad: the over-use of color in order to produce an aesthetic display can mask the data’s true meaning, 

the “pretty picture syndrome”. Finally, approximately 8 percent of men and .5 percent of women are 

color-blind to some degree, making color even more difficult to use well.   

 

     In the AR visualization, color is used for background, text, gridlines, points, curves, and surfaces.  

Rather than being used as a variable such as temperature, surface color is used as an identification 

attribute to distinguish various parts of the AR that are produced by different chemical reactors and 

mixers.  Figure 9 below is an example of three different surfaces, corresponding to distinct processes. 
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Figure 9. Use of color as an identification tool 

      

     Given the aforementioned difficulties in color selection, it becomes impossible to find color 

combinations to satisfy everyone.  So, the best policy is to let the user decide.  Background and text 

default to black and white respectively, but are selectable through color selection dialog boxes. Other 

colors of geometric data objects are set through the input data file, documented in Appendix A. This 

strategy is the best compromise to the color problem.  

 

2.2.5  Testing and Evaluation 

 

     Testing and evaluation are major factors in user interface design, and the key is to test early and 

often, rather than as an afterthought when the application is complete.  The current state of the work 

was reviewed on a weekly basis, so there were many opportunities to experiment and refine.  Also, 

our colleague, Tumi Seodigeng from the University of the Witwatersrand in Johannesbug, South 

Africa, was supplied with several beta versions of the program, and provided input via e-mail. 

Evaluation was largely informal, with comments and suggestions being implemented along the way. 

Unfortunately, time did not allow for more formal techniques to be used on larger test groups of users. 
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However, a survey form to be used in the future as an evaluation instrument is included in Appendix 

C.  
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2.3  Scientific Visualization 

 

2.3.1  General Principles 

 

     Scientific visualization has its roots in the latter part of the eighteenth century with the graphs of 

William Playfair, first published in 1786. (Tufte, 1983) It is not a new study, and goes by several names 

including data visualization and data graphics.  The goal of good visualization is to depict data visually, 

graphically, or pictorially as opposed to only listing tables of numbers, in order to maximize data 

comprehension.  The old maxim, “A picture is worth a thousand words” applies here, as most people 

recognize patterns and relationships graphically easier than numerically. Over the course of 200 years  

or so, the discipline matured, and it became clear what comprises good quality, high-content data 

graphics, at least in two dimensions on ink and paper.  

 

     Then, like so many areas, the field of scientific visualization was turned upside-down with the 

advent of computer graphics, moreover with the availability of fast, cheap computer graphics 

hardware. Computer-generated graphics began to be churned out at an amazing pace and with 

incredible ease.  Today, anyone who can enter numbers into a spreadsheet can produce printer tray-

fulls of charts and graphs in a matter of minutes.  Of course, it is just as easy to produce bad, useless, 

data-thin, and even nonsensical graphs at the same incredible pace.  One does not have to look far to 

find them either, usually a quick glance at any mass-produced news media will do. 

 

     Edward Tufte has written three excellent volumes on the study of data visualization, and he 

devotes considerable effort characterizing the differences between good and bad graphics. (Tufte, 

1983; Tufte, 1990; Tufte, 1997) What follows is only a brief list of some of his salient points. 
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According to Tufte, excellent graphics should: 

1) show the data 

2) encourage the viewer to focus on substance rather than design (transparency) 

3) not distort the data (truthfulness) 

4) present much information in a small space (high data density) 

5) make large data sets coherent 

6) encourage the drawing of comparisons and conclusions about the data 

7) reveal several levels of detail, from broad to fine 

8) display complex ideas with clarity, precision, and efficiency 

9) display large numbers of variables (multivariate) 

 

    Tufte does a superb job elaborating on all of the above points and many others in his works and the 

reader is encouraged to explore his volumes.  The effort will be rewarded with a comprehensive and 

interesting study of the history and theory of data visualization. 

 

     To repeat a previous concept, it is interesting to compare good interface design and good 

visualization.  Some points are identical: transparency, levels of detail, simple presentation of complex 

ideas.  Other aspects are specific to one topic of the other.  Finally, in computer graphics scientific 

visualizations, a widget or control or graphical element (eg. a button or dialog box) belongs both to the 

user interface and to the visualization, so the topics become even more inter-twined. In this sense, 

visualization is a broader concept than just the end-result graphic produced by the program.  Rather, 

visualization is the process of interacting with the data to producing desired and meaningful views of 

the data, resulting ultimately in comprehension of the data. 
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2.3.2  Multivariate Visualization 

 

     The goal of this visualization research is to effectively display multivariate data (n-d) on a 2-d 

device such as a computer screen, projection panel, or other VR or CG display medium. Keep in mind 

that even 3-d computer graphics are still ultimately shown in 2-d, it is only our minds that are “fooled” 

into thinking that we are seeing 3-d, since computer monitors and VR projection hardware still consist 

of flat 2-d devices. So how do we “escape flatland”, as Edwin Abbot wrote over 100 years ago? 

(Abbott, 1952; first published in 1884)  

 

2.3.3  Dimensional Attributes 

 

     The first method to “squeeze” extra variables into a limited variable-space is to use other attributes 

besides position to code additional data (Nielson et al., 1997).  Probably the best-known example is 

the familiar weather map seen daily in the newspaper or on the evening news.   

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Daily weather map 
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In Figure 10, 2-dimensional position is given by the (x,y) location of a point on the map. Since this is a 

2-d graphic, no further positional variables can be displayed.  So other attributes such as color, 

shading, texture, annotations, etc. are used to extend the dimensional space beyond two dimensions. 

Below is a slightly more complex example of the same idea. 

 

 

 

 

 

 

 

 

 

 

Figure 11. Air quality visualization (courtesy Mike Rizzo and Tom Peterka) 

      

     Figure 11 is from an earlier project by the author and a partner from the U.S. Environmental 

Protection Agency. The goal of the visualization was to search for a relationship between air 

temperature and air quality, specifically ozone levels. This view compresses four dimensions onto a 2-

d computer screen.  Three spatial dimensions are projected onto the 2-d display, and color is coded 

for the fourth dimension.  Specifically, (x,y) indicates the position along the earth in longitude and 

latitude, z indicates ozone level, and color indicates temperature.  

 

2.3.4  Animation 

 

     What Tufte calls “narratives of space and time,” (Tufte, 1990) is often called animation.  When time 

is one the variables, real-time computer graphics provides a direct and natural way to display it: to 
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show a “movie.” This is especially effective when the scene complexity and graphics hardware is such 

that an acceptable frame rate (20-30 minimum frames per second) can be maintained so that smooth 

motion results. To continue with the previous example, if ozone and temperature were displayed 

across space and time (several hours, days, months, etc.), the display could be animated by 

producing a time-series of individual snapshots as shown above, and played back along with a clock 

display or time counter.  The result would be compressing 5 dimensions down to 2. 

 

2.3.5  Dimension Reduction 

 

     Multivariate display options are limited when there are multiple dimensions that cannot be codified 

intuitively using animation, color, texture, or other display attributes. This is the nature of the problem 

in the AR work.  All dimensions in the problem space are spatial, and moreover the user will be 

evaluating the AR based on geometric characteristics.  Of particular importance is that an AR must be 

convex, and the user will be looking for convexity in any of the produced views.  Therefore, coding 

spatial dimensions with color or other attributes is not useful.   This leaves only one option: to view a 

subset of dimensions at a time.  Tufte calls this strategy “multiples”; (Tufte, 1997) the term used here 

is dimension reduction, whereby the number of dimensions is reduced to three or four at any one time. 

 

     In dimension reduction, two strategies can reduce the dimensions of a space.  One may either 

project the data to the lower dimensional system, or create a cross-section through the data.  A simple 

example reducing three dimensions down to two will make this clear.  Suppose a sphere in 3d is to be 

projected to 2d.  The result is essentially a top-down view of the sphere, a circle whose diameter is the 

same as the diameter of the sphere.  On the other hand, in a cross-section, a sectioning plane is 

specified and the resulting view will be the intersection of the original model with the section plane. 

Continuing with the sphere example, the result will be a circle again, but probably a smaller diameter 

than the sphere depending on the position and orientation of the section plane.  In the general n-d 

case, the original model is n-dimensional and a subset of dimensions is viewed via projection or 
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section. The section plane becomes a hyper-plane, or a higher dimensional plane formed by fixing 

various coordinates at specific values. Higher dimensional entities are discussed in more detail in 

Section 2.3.7. 

     

2.3.6  Coordinates and Coordinate Systems 

 

     Without coordinates, a visualization is nothing but a pretty picture.  It is the assigning of coordinate 

values that quantifies a data set and permits its visualization. There are many types of coordinate 

systems, not just the familiar Cartesian.  For example, logarithmic, polar, spherical, parabolic, etc. are 

all possibilities. The choice of a coordinate system is not arbitrary; there are two reasons for choosing 

one over another for a given application.  First, a system may naturally lend itself to the data and 

simplify the problem.  For example, certain problems are much easier to solve in polar or spherical 

coordinates because the equations are simpler and the number of coordinates fewer.   

     

     The other factor is comprehension.  The real goal of scientific visualization is to tell a story about 

the data (Tufte, 97).  Data for its own sake is worthless; the value is in conclusions that are drawn, 

inferences made, comparisons generated.  The choice of coordinate system is critical because 

patterns can become clear in one system that were obscured in another, just as a constant growth rate 

pattern may not be obvious on a linear scale but takes the familiar straight-line form on a logarithmic 

scale.  

 

     Besides the type of coordinate system, scale ranges and resolutions are also critical.  If the goal is 

to tell a story about the data, the interesting parts may be missed by looking in the wrong places, not 

looking closely enough, or looking too closely and “missing the forest for the trees”. This is all a matter 

of setting appropriate scale ranges and scale steps. 
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     In the AR application, two types of coordinate systems are utilized to plot chemical concentrations 

and mole fractions. Cartesian coordinates are used in 3-d concentration space, where concentration is 

measured in amount per unit volume, such as moles per liter. The second coordinate system is called 

“tetrahedral coordinates”.  Here the plotted values are mole fraction rather than concentration, and 

there are no units because the measurement is a fraction of the desired concentration to the whole. 

The tetrahedral system is an extension of the ternary diagram, a familiar paradigm for chemical 

engineers where each of 3 components is plotted at the vertices of an equilateral triangle. All 

coordinates of a given point must add to 1.0, and since the dimensions are not independent, one extra 

coordinate may be “squeezed” into the view, resulting in 3 items on a 2-d graph as shown below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Ternary diagram 

 

     By definition any vertex has a coordinate of 1.0 of its respective component. As one moves further 

from a vertex, the contribution of the vertex component decreases and others increase. In Fig. 13, the 

point labeled X has composition (A,B,C) = (0.2,0.3,0.5). The tetrahedron is an extension of the ternary 

diagram to four components, where each face is actually a ternary diagram.  See Figure 13 below for 

an example of tetrahedral coordinates. 
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Figure 13. Tetrahedral coordinates 

      

     To project higher numbers of components down to the four available, three components are plotted 

respectively on three of the pyramid’s vertices, and there is a choice about the fourth.  It can either be 

the remainder (all of the rest added up), or it can be an individual fourth component.  In either case, 

the totals are always normalized so that they add to 1.  

 

2.3.7  Dimensionality 

 

     Before visualizing high dimensional spaces, some background about higher dimensional geometry 

is needed to avoid confusion later.  The problem space for the AR visualization is n-d, where n is the 

number of components in the chemical system.  This poses no problem in a theoretical or purely 

numerical sense, but the trouble is that the AR method is graphical, and it is not natural for humans,  

living  in a 3-d world, to graphically comprehend higher dimensions.  For example, what types of 

entities are possible in an n-d world? The following discussion hopefully answers not only that 
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question, but also forms a coherent framework for visualizing objects in any arbitrary number of 

dimensions.  

 

     First, only 3 different entities are permitted in any world, regardless of dimension: 

• Point – a single location in n-d space, P(x0,x1,…xn-1) 

• Curve – several points connected together in a path of straight lines; a single line segment is just a 

curve with only two points 

• Surface – a family of several curves 

 

     It will be shown later that the boundary of an AR is of concern and not its interior, so solids are not 

included as a fourth entity, thus simplifying the problem. (A solid would be defined as a closed family 

of surfaces.)  Entities are always finite size, or zero size in the case of points. For example, there are 

no lines of infinite length as in Euclidean geometry. Also, notice how each more complex item is built 

recursively from a family of simpler items. Therefore, the complex entity may always be replaced with 

many simpler ones, if that makes the thought process clearer.  For example, the boundary of an AR is 

a surface or several surfaces, but this may be considered simply as a large collection of n-d points.  If 

one can visualize an n-d point, one can visualize an n-d curve and an n-d surface.  One final note: the 

use of the prefix “hyper”, as it appears in some of the literature (eg. hyper-plane, hyper-surface, etc.) is 

avoided in this discussion.  It is understood that all spaces are n-d, and calling everything “hyper” adds 

nothing new. 

 

     Points, curves, and surfaces also have their own dimensionality that is independent of the of the 

original concentration problem space.  That is, a way is needed to show that a point has no size, a 

curve has length, and a surface has length and width.  Fortunately, there is a convenient method to do 

this,   the   parametric   form.   (Thomas and Finney, 1981)   Any   geometric   entity   can   be   defined 

parametrically as well as conventionally.  For example, think of the familiar definition of a 2-d line.  

y=mx+b (among other forms) is a conventional equation, but a parametric equation can also be 
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formed: x = xstart + t * xdir  Here x is a vector x(x,y), and t is the parameter.  The dimensionality of the 

original space has been separated from the dimensionality of the parametric space.  In the above 

example, x could just as well been 3-d, 4-d, or n-d, and the line would still have one parameter, t.  In a 

similar way, a surface depends on two parameters; u and v are commonly used. Thus, the following 

conventions result. 

 

• Points are parametrically 0-dimensional entities 

• Curves are parametrically 1-dimensional entities 

• Surfaces are parametrically 2-dimensional entities 

 

     Once again, points, curves, and surfaces exist within an n-d concentration space, and the above 

definitions do not contradict that, as indicated by the qualifier “parametric”. Using the above 

conventions, a surface in n-d is defined as a parametric 2-d collection of curves, which are in turn 

parametric 1-d collections of n-d points. 

 

2.3.8  Convex Hulls 

 

     Given a set of points in a space, the convex hull is the smallest convex set containing the points. It 

is convenient to imagine a convex hull in 3 dimensions, but it is important to realize that convex hulls 

can theoretically exist in n-dimensions. The bounding faces of the hull are called “facets”. In the 3d 

case, the facets are triangles, but in the general case they are simplices. For reference, background 

material on simplices can be found in Bell (Bell, 1987) and Murty (Murty, 1983).  There are several 

algorithms for computing convex hulls, such as incremental, gift wrap, divide and conquer, and quick 

hull.  For an overview, the reader may consult Lambert (Lambert, 1998), and Clarkson offers more 

detail on the incremental algorithm. (Clarkson, 1993)  In the following discussion, reference is made 

both to n-d convex hulls (“full hulls”) and 3-d convex hulls (“view-based hulls”). It is important for the 

reader to note which type of hull is the subject of discussion, as they serve different purposes. 
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     In relation to ARs, there are three uses for convex hulls.  First, some AR data-generation 

algorithms produce interior points inside the AR as well as border points on the boundary of the AR.  

Keep in mind that researchers producing candidate data points cannot visualize them until after the 

data are generated and collated into an input data file for the visualizer, by which time their search for 

candidate points may have produced both boundary and interior points.  In ARs only the boundary is 

of interest, so interior points can be filtered out by generating an n-d convex hull and determining 

which of the input points are not included in the hull vertices. 

 

     Second, a 3-d view-based convex hull can be computed within the visualization and overlaid on the 

current 3-d view as a way to check the convexity of the attainable region.  By drawing the convex hull 

as a semi-transparent “skin”, it can be seen to coincide with the AR.  Finally, the third use is to actually 

draw the AR surfaces as the 3-d convex hull. This is not needed when data are neatly organized into 

curves and surfaces composed of adjacent curves, but becomes necessary when computer 

simulations generate data in a disorganized fashion and adjacency information is unavailable.  

     Convex hull algorithms are a study in themselves.  For this reason, previous research by Ken 

Clarkson of Bell Laboratories, Murray Hill, New Jersey is utilized. (Clarkson et al., 1993)  Mr. Clarkson 

generously provides a complete stand-alone open-source application for computing convex hulls in 

general numbers of dimensions, downloadable from (Clarkson, 2003). Clarkson’s algorithm is an 

incremental one that grows the convex hull one point at a time.  The basic data structure for storing 

the hull is a splay tree.  Splay trees are binary trees that maintain an average or amortized cost per 

operation of O(logN) through  a succession of tree node rotations that keep recently accessed nodes 

near the top of the tree and also maintain a roughly balanced tree structure. (Weiss, 1999)  
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2.4  Attainable Regions  

 

     The application domain of this project is attainable regions or ARs, so some background 

information in chemical reactor design and ARs is necessary before proceeding further. The AR is a 

tool to solve the general problem of chemical reactor design synthesis, or the problem of determining 

some combination of different types of chemical reactors to achieve a desired output. In practice, 

chemical systems are not limited to just one operation or type of reactor.  There are three common 

types of ideal reactors plus mixing, and they can be combined in an infinite number of combinations 

through series, parallel, bypass, looping, etc., so clearly it is a large problem.   

     Even if a physical reactor does not operate ideally, it can often be modeled as a combination of 

ideal operations. For example, in practice not all of the reactants in a batch reactor may combine, but 

this may be modeled as an ideal reactor with bypass, so that some of the feed bypasses the reactor 

and continues to the next stage, as shown below.  

 

 

 

 

 

 

 

 

 

 

Figure 14. Non-ideal reactor represented using ideal models 
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     To phrase the problem in terms that chemical engineers are accustomed to, chemical plants today 

are huge, complex, and expensive operations, with thousands of miles of piping such as the Gulf 

Coast refinery shown below.   

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Modern chemical plant 

 

     The economic stakes are high and trial and error is not a viable approach to building a new system. 

The object of the AR is to provide the chemical engineer with a theoretical basis for designing a 

chemical system by graphically enumerating all possible options, without restricting choices in an 

attempt to keep the problem small.  This is contrary to the way that reactor synthesis is often done.  

For example, without theoretical tools such as the AR, heuristics or “rules of thumb” are often used to 

limit the problem space. The trouble with this approach is that these decisions may be based more on 

the way that things have always been done, rather than on science.  Not that past experience should 

be ignored, but new combinations will not be found by relying only on experience and rules of thumb, 

and there is no guarantee that the optimal approach has not been accidentally ruled out by limiting 

combinations of operations. 
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     A more scientific method is desired. The first step to finding an optimal system is to determine the 

space of all possible systems. Then, the optimal or desired solution can be selected from that solution 

space.  The AR is this space of possible combinations, and represents a volume or solid in n-space, 

where n is the number of chemical components in the system.  This first step is of interest in this work, 

finding the space of all possibilities or AR, and in particular visualizing what that space looks like.  The 

second step, using the AR to identify the desired state and an optimal path to reach that state, can still 

be a complicated optimization problem and is beyond the scope of this work, but the AR at least 

defines the possibilities. In the following sections, specific features of the AR are described in more 

detail. 

 

2.4.1  Attainable Region Theory 

 

     Attainable regions are not a new idea; Horn first described in 1964 the idea of the set of all possible 

solutions to chemical reactor synthesis problems, which he called the attainable region. (Horn, 1964)  

His definition of the AR was quite broad in the sense that he included as variables reactor 

concentrations, holding time, pressure, temperature, economics, etc.  This thesis closely follows the 

more limited definitions of the AR proposed by later authors such as Glasser, Hildebrandt, and 

Feinberg, where the AR is restricted to the possible set of reactor concentrations in isothermal 

reactors involving mixtures of constant density, operating at steady state conditions.  (Feinberg and 

Hildebrandt, 1997; Glasser, et. al., 1987) Four different unit operations are allowed, three of which are 

types of ideal reactors and the fourth is bulk mixing; all are described in the following sections. 

 

     It should be noted that these assumptions are not overly restrictive; many chemical processes are 

performed using these four operations and under these conditions.  Keep in mind that the unit 

operations can be combined in any conceivable arrangement.  On the other hand, processes such as 

distillation, separation,  and  other  conditions  are not included in this work, and perhaps the scope of 
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future work will be to expand the generality of the method more closely to what Horn originally 

envisioned. 

 

2.4.2  Terminology and Definitions 

      

     Consider the concentration vector at any point in the system as an n-dimensional vector of 

individual component concentrations c(c0, c1, c2,…, cn-1) where ci is the concentration of the (i+1)th 

component of the system in moles per liter. (Vector quantities are denoted with a bold font.) 

Graphically, the component compositions directly map to coordinates or dimensions in a coordinate 

system. Let the rate of change of concentration be defined also as a vector, called the rate vector, 

r(c), in units of moles reacted per unit volume per unit time. Lastly, define residence time or " as the 

time that the reacting material spends inside the reactor; units are typical units of time such as 

seconds, hours, etc.  Finally, concentration and residence time are related, as the concentration within 

a reactor changes over time, ie., current concentration is a function of residence time, c = f("). 

 

2.4.3  Fundamental Reactor Types and Operations 

 

     Three types of ideal reactors plus bulk mixing are allowed for a total of 4 fundamental operations.  

The following description is a very brief overview of these operations, but the reader is encouraged to 

consult a chemical reactor design textbook such as Fogler (Fogler, 1999) for a complete reference.  

Although attainable regions have been applied to other types of systems such as separations, (Nisoli 

et. al., 1997) this thesis is limited to the following: 

 

Plug-flow reactor (PFR) 

 

     The plug flow reactor, or PFR, is a tubular reactor where the input material enters at one end, flows 

through the reactor, and exits at the other.  In an ideal PFR, velocity is assumed to be in the axial 
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direction only, and all quantities to be constant in all other directions. The flow is modeled as turbulent 

plug flow as the name implies, and the PFR is usually diagrammed as shown below. 

 

 

Figure 16. Plug flow reactor 

 

 

 

The PFR is usually modeled by the following differential equation that is integrated along the length of 

the reactor to determine the concentration at any point along the reactor: 

 

dc/d" = r(c) 

where c is the output concentration vector, r(c) is the reaction rate vector, and " is the residence time, 

which in the PFR is the time it takes one unit of material (eg., one atom) just entering the reactor to 

make its way to the exit.  In an ideal PFR, " is the same for all atoms of the material at a given 

position. 

 

 

 

 

Differential side-stream reactor (DSR) 
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     Similar to the PFR, the differential side-stream reactor or DSR is perhaps less common in practice 

but no less important in theory as it plays a vital role in the AR.  Like the PFR, it is a tubular reactor but 

with additional material being added to the reactor along its length (the side-stream composition). It 

can be diagrammed as below. 

 

 

 

 

 

 

 

Figure 17. Differential side-stream reactor 

 

c1 represents the primary feed, and c0 represents the side-stream feed. The side-stream feed need 

not be constant along the reactor’s length, in fact Feinberg shows that there exists a critical sidestream 

addition policy for a given DSR. (Feinberg, 1999) This addition policy, so-called the “alpha policy”, will 

be non-uniform but is a function of the position along the length of the reactor. This critical alpha policy 

is important because it results in the maximum attainable region, but it is also very difficult to compute 

for higher dimensional concentrations.  Feinberg gives the governing equation for a DSR as:  

dc/d" = r(c) + #(c) (c0 – c) 

where c is the concentration vector at some point along the reactor path, c0 is the side feed 

concentration vector, and #(c) is the side-stream addition or alpha policy, r is the reaction rate vector, 

and " is the residence time. " in this case refers to the residence time of a particle from the main input 

stream, c1 ,not the side stream. 

exit 
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Continuous-stirred tank reactor (CSTR) 

 

     The continuous stirred tank reactor or CSTR is a reactor type comprised of a large tank that is 

stirred continuously, so it is assumed that there are no variations in concentration throughout the 

space of the tank.  Therefore, the concentration of the exit material is the same as throughout the 

interior of the vessel.  It can be diagrammed as below:  

 

 

 

 

 

 

 

 

Figure 18. Continuous stirred tank reactor 

 

 

The ideal CSTR obeys the following algebraic equation:  

c – co  = " r(c) 

where c is the output concentration vector, co is the input concentration vector, r(c) is the reaction rate 

vector, and " is the residence time, or the time the material is in the tank.  In an ideal CSTR, all atoms 

of material exiting the reactor have the same ". 

 

Mixing 
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     Mixing of streams produces intermediary concentrations linearly between two concentration 

vectors. A bulk mixer allows two liquids to be combined in any convex combination, and it is this 

operation that gives the attainable region one of its most characteristic properties – convexity.  If two 

points in AR space are attainable, then so are all of the points on the line connecting them. 

 

 

 

 

 

 

 

Figure 19. Mixing 

 

 

c = (b / (a + b)) c1 + (a/ (a + b)) c2 

 

where c1 and c2 are the concentrations at the endpoints, c is the resulting concentration anywhere 

along the line segment connecting c1 and c2, and a is the n-dimensional (n-d) distance from c1 to c, 

and b is the n-d distance from c2 to c. 

 

 

 

 

 

2.4.4  Properties of the Attainable Region 
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     All of the groundwork is now in place to form an attainable region.  The AR is the closed volume in 

n-dimensional space representing all of the possible (attainable) chemical compositions that can be 

produced by the chemical system, given some starting feed composition. In evaluating a candidate 

AR, all of the following test conditions must necessarily hold in order for the AR to be valid. (Feinberg 

and Hildebrandt, 1997) 

 

• The boundary must be convex, since mixing can fill in any concavity. 

• No rate vectors on the boundary may point outward from the AR.  They must either be zero, or 

tangent to the boundary, or point inward.  If a rate vector from any point on the AR boundary were 

to point outward, the AR would have to be extended (grown) because a new, larger AR would be 

possible. 

• No rate vectors in the complement of the AR, when extrapolated backwards, may intercept the AR 

(known as the complement principle). If such a rate vector were to exist, its base point could be 

reached from the boundary of the existing AR with a suitable CSTR, again growing the AR. 

 

     To summarize, the AR represents the largest possible volume formed by the chemical 

compositions of the given system, since it represents all possible compositions that are attainable. If 

there is any operation that can make the AR grow larger, then it must grow in order to be valid.  The 

above properties are three ways that this can happen. One final note: the AR represents operations in 

the theoretical limit.  For example, a point may be attainable through an infinitely long PFR.  Although 

in practice this is impossible, it is possible to come arbitrarily close through a sufficiently long PFR. 

 

 

 

 

2.4.5  Features of the Attainable Region 
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     Let us now further characterize an AR by the following features, according to Feinberg. (Feinberg 

and Hildebrandt, 1997) 

• The boundary of the AR is a 2d parametric surface, or a collection of such surfaces. 

• The boundary determines the AR and vice versa, ie., the boundary is of interest rather than the 

interior. 

• The boundary is divided into surfaces of different types - curved and ruled.  The difference is 

diagrammed in Figure 20 below. 

 

 

 

 

 

 

 

 

 

 

 

Figure 20. Curved and ruled surfaces 

 

• Curved surfaces correspond to PFR reactors.  Feinberg and Hildebrandt call these the "extreme" 

parts of the surface.  All points that are extremes will be found in PFR surfaces, and therefore any 

extreme point will be reached through union of a PFR trajectory (curve) preceded perhaps by 

some other type.  "PFRs are the highways that provide access to extreme points"  (Feinberg and 

Hildebrandt, 1997) 

• Ruled surfaces correspond to mixing operations. 

• Junctions between surfaces, called "connectors", are 1-d parametric curves. 
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• Sharp connectors (adjacent surfaces not tangent) correspond to PFRs (no mixing, only reacting). 

• Smooth connectors (adjacent surfaces tangent) correspond to DSRs (mixing and reacting 

simultaneously). 

• Endpoints of DSR connectors (smooth) correspond to CSTRs. 

 

      These features are evident in the results of sample problem 1; see Section 4.2. One of the 

objectives of the AR visualization is to visually verify a candidate AR for validity.  Functions built into 

the program such as pan, zoom, rotate, coordinate system settings, and convex hulls permit the 

critical viewing of the AR and the ability to quickly and easily spot the above features.  When viewing 

sample problem 1, it is instructive to refer back to this list and look for all of these features in the AR.

  

2.4.6  Current Attainable Region Visualizations 

 

     A survey of relatively recent AR literature reveals that visualization in general lags behind other 

aspects of AR research such as theory, algorithms, numerical methods, etc.  The following literature 

review is not intended to be a criticism of publications in any way.  It is however intended to be a 

justification of the need for better visualization techniques in the AR field. As a direct example of this 

fact, consider the following correspondence from a collaborator in South Africa. “I am currently 

developing algorithms for higher AR and have 3D and 4D results. I am struggling with the 4D 

interpretation, not easy without visualization!” (Seodigeng, 2002, personal communication)  

  

     Table I below summarizes eleven AR research papers published in recent years. Current research 

is focused in a few locations: University of Witwatersrand in Johannesburg, South Africa, Carnegie 

Mellon University in Pittsburgh Pennsylvania, University of Rochester in Rochester New York, and 

University of Massachusetts in Amherst Massachusetts.  A few trends stand out. First, the most 

popular visualization method is still the 2-d line graph.  Second, another common approach is to 

discard dimensions altogether from a visualization, usually accompanied by an explanation that only 
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certain dimensions are of interest.  For example, Feinberg and Hildebrandt write: “We shall suppose 

that A2 and A3 are desirable products and that species A4 has no value.” (Feinberg and Hildebrandt, 

1997) Thus, A4 is not plotted in resulting visualizations and a 4-d problem is displayed in 3-d. Finally, 

the third approach is to not visualize the results at all in the publication.  Even in these cases, a 

sample problem of a certain dimension is discussed, but results are not displayed graphically. 

 

     In the majority of cases tabulated below, the dimensionality of the visualization is less than the 

dimensionality of the sample problem. This is a contradiction in philosophy to the AR method, which is 

inherently n-d.  The basis for ARs is to display the space of all possible compositions in n-d space.  If 

results are displayed in a reduced space, (for whatever reason) then all possibilities are not visible, 

reducing the efficacy of the AR method.  It must be noted that there is a significant difference between 

“temporary” dimension reduction on a per view basis, and “permanent” dimension reduction for an 

entire visualization.  The former case is indeed what is utilized in the AR visualization developed for 

this thesis.  A variety of views with different combinations of dimensions can be produced because all 

dimensions are stored internally and subsets are viewed at any one time. The latter case involves 

reducing dimensionality from the outset and only visualizing certain dimensions.  In all of the 

dimension-reduced visualizations below, no other views of different combinations of dimensions exist, 

indicating that “permanent” reduction has occurred. One final footnote is that none of the AR literature 

surveyed utilized tetrahedral coordinates as a display paradigm. 
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SURVEY OF AR LITERATURE 
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3. APPLICATION DEVELOPMENT 

 

     Many concepts developed in the previous chapter are implemented during the course of 

developing a working computer application including dimension reduction, various coordinate systems, 

and convex hulls.  Other application features are explored in this chapter for the first time, such as 

surface rendering, data probing, and development of a standard input file format. 

 

3.1  Introduction 

 

     The synthesis of background knowledge from computer science, scientific visualization, and 

chemical engineering is demonstrated through a working computer program.  Two purposes are 

served by the application development: to gain knowledge and to share knowledge with others. 

Through collaboration with working researchers in ARs, one goal is to actually help someone else 

solve a real visualization problem.  In this way, not only is knowledge personally gained, but the 

enhancement of the current state of AR visualization is shared through a scientific community for the 

benefit of all.  

 

     The sections in this chapter may be roughly divided into two categories.  The first group, Sections 

3.2 through Sections 3.7, describe the implementation of the major contributions of this thesis to the 

current state of AR visualization and closely relate to the background issues presented in the previous 

chapter.  The second group, Sections 3.8 through Sections 3.11, are a discussion of some of the 

practical problems that had to be solved in order for the major contributions to become a reality.  This 

group of topics tends to be more specific to computer graphics and somewhat less specific to ARs.  It 

should be noted that while this second group is less theoretical in nature, research was still done into 

various ways of accomplishing these tasks. This research is documented within these sections rather 

than separately in the background chapter. 
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     The application is an interactive viewer that allows an AR data file to be read in and viewed in real-

time 3d graphics.  Choices of coordinate systems (orthogonal and tetrahedral) are available as well as 

the ability to selectively view 3 or 4 dimensions out of any general number.  The program includes 

interactive viewing controls such as panning, rotating, and zooming, and includes realistic lighting and 

shading of surfaces.  Querying of the data is available through a data probing algorithm; various other 

controls and options are available such as color choices, labels, etc. Through the use, with permission, 

of open-source code for computing convex hulls, the program integrates a convex hull computation 

feature. A data file format was developed for the input of AR data to the program, and is documented 

in Appendix A.  Finally, an “offline” pre-processing utility was written to accept large data sets and filter 

out extraneous data. 
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3.2  Platforms 

 

     At EVL, there exist a variety of computer graphics and virtual reality hardware and software, 

including two CAVEs, so some choices had to be made about hardware and software platforms.  As 

can happen, these decisions changed a few times during the course of development.  The initial 

design was to develop a CAVE-based application running under the CAVE Library, on Silicon 

Graphics machines (IRIX 6.5) and written in C++ and OpenGL.  Initial expectations were to gain an 

advantage in high dimensional visualization through the use of a high-end virtual reality system such 

as the CAVE.  Development proceeded in this direction for several months, then a gradual migration 

occurred toward a PC Windows-based application. 

 

     The reasons are several.  From the onset, most of the development was actually done on a 

Windows laptop running a console-based application that closely resembled the CAVE program.  (A 

console application in Windows terminology is an application that runs in a DOS-like console window, 

similar to a UNIX console, without any of the Windows GUI features such as menus, dialog boxes, 

etc.)  In this way code was written offline and offsite, and each week ported and tested in the CAVE.  

This continued for several months, and the user interface primarily consisted of pressing wand buttons 

in the CAVE.  In CAVE terminology, the “wand” is a tracked “3d mouse” with five buttons and a 

joystick. (Some wand versions have only three buttons and a joystick or trackball.)  Navigation is  

performed by pointing the wand and operating the joystick, and features are selected by pressing the 

various buttons.   

     Several ideas slowly evolved.  First, testing became more frequent on the Windows console and 

less frequent in the CAVE, primarily because the laptop could be conveniently set up wherever it was 

needed, rather than making a trip down to the CAVE, sometimes to find it unavailable, etc. This 

convenience made it clear  that  a  full-fledged  Windows application complete with GUI items such as 

menus, dialog boxes, and online help would be more accessible than a CAVE program, especially 

considering that the goal was to collaborate with other researchers who most likely would not have 
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access to CAVE hardware.  Of course, the console application used for initial development had none 

of those GUI elements, and a good deal of work would be required to build one. 

 

     At the same time, the interface elements provided by the CAVE, primarily the wand buttons, 

became too restrictive.  When the program was new and the list of features small, five wand buttons 

were sufficient, but as features were added the burden on the user became to remember which button 

or combination of buttons did what. A logical step would have been to display user interface elements 

within the display space of the CAVE, such as menus and to select menu items by pointing at them 

with the wand.  However, the CAVE system, to the best of our knowledge, does not provide any tools 

for building standardized user interface elements, as does Windows, or XWindows (the window 

system under most UNIX operating systems).   

 

     That is not to say that GUI elements have not been programmed for the CAVE before; many have 

been developed during the course of prior work.  However, they are all project-specific and not general 

purpose enough to re-use easily.  What is required is a set of GUI building tools such as Microsoft’s 

MFC for Windows, or FLTK for Linux.  Recall from Section 2.2.3 that building tools are an essential 

part of a modern user interface. Without them, all elements would have to be programmed in OpenGL 

from “scratch”.  Anyone who has ever done this knows that it rapidly becomes a project in itself, 

quickly consuming the majority of the application’s code.   While user interface design is certainly a 

part of this thesis, it is not intended to become the focus of the work. 

 

     The last reason for the switch to a PC application is the growing trend to find economical graphics 

cards on PCs that rival or surpass the highest-end graphics machines of just a few years ago.  

Spurred by the computer games industry, high-speed realistic computer graphics can be found on just 

about any commodity PC, or upgraded for a hundred dollars or so.  In general, even at our own EVL 

lab, the trend seems to be moving toward PCs and PC clusters, both Windows and Linux, and the 

Silicon Graphics dedicated graphics machines tend to be used less and less. 
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     That is not to say that a PC is the only intended platform for the AR visualization.  Future plans are 

to utilize a tiled display, either monoscopic (2-d) or auto-stereo (3-d) to display results.   Recall from 

Sections 2.1.2 and 2.1.3, that both of these devices provide wide field of view and high resolution, 

making them primary candidates for this type of scientific visualization. Another advantage is the fact 

that the tiled nature of the displays lends itself to showing multiple views simultaneously, one per tile if 

desired. The program architecture described in the following section is designed to be scalable to 

multiple views. The final advantage that both of these systems have over the CAVE is the availability 

of a master display, keyboard, and mouse nearby to the tiled display which can function as a “control 

panel” over the application. On the other hand, in a CAVE setup, this workstation is outside of the 

CAVE and the user has to remove VR hardware and exit the CAVE to access it.   
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3.3  N-Dimensional Architecture 

 
     The AR visualization internally is an n-dimensional architecture.  Hence, it is not restricted to a 

certain size of problem and can produce any combination of dimensions for a given view.  The ability 

retain n dimensions and change views easily along with interactive graphics features (pan, zoom, 

rotate, data probing) give it a distinct advantage over generic graphing packages or spreadsheet 

programs. Although at this time a single view is produced at a time, multiple simultaneous views were 

a design goal from the start, and the architecture is scalable to readily accommodate this. 

     Two ingredients are required by an n-dimensional architecture.  Data storage must be allocated 

dynamically and n-d data must be de-coupled from rendered entities. The first item is accomplished by 

a 2-dimensional linked list. (“a list of lists”) For example, imagine a vertically oriented dynamic linked 

list of points.  Since the number of points is unknown, dynamic allocation allows the list to grow 

vertically. Then, each point can have n-dimensions, represented by the horizontal direction.  Each 

coordinate is a node in a horizontal linked list, as shown in the figure below. Dynamically allocated 

arrays could have also been used for the same purpose. 

 

 

       

 

 

 

 

 

 

 

 

Figure 21. Data structure for storing n-d points 
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        De-coupling of internal data from the viewed display is accomplished using the Model View 

Controller (MVC) paradigm. MVC was originally developed for programming GUIs to manage user 

input, output, and internal state and control information in an organized way. (Goldberg, 1984)  A key 

idea of MVC is the separation of the system’s model from the user’s view of it. Figure 22 below left 

shows the classic MVC organization. The key point is that even when there are multiple views, there is 

still only one model, which is view independent. Figure 22 below right shows the situation when there 

are 2 different views of the same model. 

 

 

 

 

 

Figure 22. MVC model  

  

     The AR visualization architecture closely parallels MVC; the model is the full n-d data, and a view is 

an individual projection or section based on the coordinate system properties.  The controller is just 

the application.  Object-oriented programming encapsulates data structures and methods for each 

object (class), and makes access possible only through well-defined interfaces.  Figure 23 below 

depicts the structure of the application data class and render class; note the similarity with Figure 22 

above. 

 
 

 

 

 

 

Figure 23. Program structure 

3.4  Data File Format 
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     The AR visualization is used to see a pre-computed attainable region, and verify its properties and 

validity. Therefore, the approach is a collaborative one between AR researchers producing simulation 

data and perhaps other individuals viewing the visualization, as diagrammed below.  The focus of this 

work is on the visualization and AR experts are relied on to provide simulation data, which may occur 

in a remote location. Moreover, visualization does not have to occur in only one location.  Data should 

be transferable to several locations so that various researchers can view the same results, discuss 

conclusions and share ideas. 

 

 

      

 

 

 

 

 

      

Figure 24. Collaborative approach to visualization 

 

     In order for the above scenario to function, there must exist some common format for the simulation 

output and the visualization input, hence the file format. File names end in the suffix “.ard” (attainable 

region data) to indicate adherence to the format, but at a low level are simply ASCII text files such as 

“.txt” files under Windows. The file is organized as follows. A header section defines the file version 

number, number of dimensions, and names of the components. The next section defines all points of 

special interest. This is followed by all curves, and lastly by surfaces. Colors can be defined anywhere 

in the file and changed as often as desired. Labels and a visibility flag may be assigned to any entity. 

Comments may also be used. The complete format is documented via a sample file in Appendix A and 

is a significant standardization step for the transfer of AR data. 
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     The format is relatively new (version 1.0) and is still subject to revision through ongoing research.  

Hopefully one day it may evolve into a standard that all AR simulation programs will write to. As a 

courtesy to other researchers, outside data was temporarily accepted in any format (eg. multiple 

smaller files of columnar spreadsheet data) and then parsed and collected it into one “.ard” file. This 

was done by a combination of text editing and writing small utility parsing programs to help create the 

final data file. It is expected that in the future AR researchers will perform this process locally, collating 

their data into a file according to the standard. 
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3.5 Tetrahedral Coordinates 

 

     The tetrahedral coordinate system was introduced in Section 2.3.6 as an extension to a familiar 

graphing paradigm for chemical engineers, the ternary diagram.  Through the use of tetrahedral 

coordinates, a fourth variable can be displayed in the same view, resulting in a 4-d normalized display.  

Moreover, the fourth dimension does not have to represent a single component.  The first three 

vertices of the tetrahedron represent individual chemical components, but the fourth, called the 

“remainder” can selectively represent a single component or some combination of the remaining 

components.  Using the tetrahedral coordinate system together with a remainder axis representing all 

other components results in a truly n-dimensional display, where all dimensions are viewed 

simultaneously.  This capability represents a significant addition to the current state of high-d AR 

visualization, and is shown in the example below where all 4 dimensions of a 4-d problem are visible. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25. 4-d tetrahedral view 
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3.6  Dimension Reduction 

 

     Along with the tetrahedral system, a conventional orthogonal coordinate system is still available.  

When using orthogonal coordinates, a subset of 3 dimensions are viewed at a time using dimension 

reduction techniques as explained in Section 2.3.5 earlier. It will be possible in the future to combine 

several components into one axis, similar to the remainder axis in the tetrahedral system, but 

presently only one component is plotted on each orthogonal axis. It will also be possible in the future 

to plot in orthogonal coordinates with mole fractions, either normalized or un-normalized, although 

presently concentrations only are plotted in orthogonal coordinates. Dimension reduction methods in 

orthogonal coordinates are best explained with the help of the user interface for coordinate system 

properties. 

 

3.6.1  User Interface 

 

     The following example is for a hypothetical eight-dimensional system with components named x0 

through x7. (The component names are specified in the data file and can be whatever the user 

desires, eg., chemical formulas, names, etc.)  Upon reading in a data file and selecting the coordinate 

system properties menu entry, the dialog box shown below appears. The default settings are 

composition using orthogonal coordinates, with the first three components plotted on the x, y, and z 

axes respectively.   
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Figure 26. Coordinate system properties 

 

      At the top of the dialog box, the first group of buttons controls the coordinate system type. The 

next group of buttons is used to select composition or mole fraction as the plotted unit.  Composition is 

the concentration of each component, as given in the input data file in a suitable unit such as moles 

per liter. Mole fraction is an option where the plotted values are the proportion of the component with 

respect to the whole. When using mole fractions, the entire mixture has a value of 1.0; at any point 

every component has some value between 0.0 and 1.0 and the sum of all of the components is 1.0. 

The choice of concentration or mole fraction is available only when using orthogonal coordinates; 

tetrahedral coordinates are always plotted as mole fractions, by definition. 

 

     The lower section of the dialog box is used to set which components should be plotted on which 

axes, which is the actual dimension reduction part of the interface.  The user selects a component to 
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plot on each of the X,Y,and Z axes. Corresponding radio buttons automatically are enabled / disabled 

based on prior inputs to prevent the user from composing an invalid view setting. The “Specified” 

column is used when sectioning instead of projection is the method of dimension reduction, and a 

cutting plane is specified by fixing the values of all other coordinates except those being plotted. This 

feature is not yet available, as its need has yet to be determined. Thus far, the projection paradigm 

has sufficed for the sample problems tested. 

 

     To reiterate, in the near future it will be permissible to assign multiple components to any axis in 

both orthogonal and tetrahedral coordinates, as is presently available for the tetrahedral remainder 

axis.  In this way the user will have complete control over which dimensions to reduce, if any. 

 

 

3.6.2  Relationship to Attainable Region Properties 

 

     Recall from Section 2.4.4, that an AR must be convex and that no rate vectors may point outward 

from the region. If the AR had concavities, they would be filled by mixing, and if the region could have 

grown outward through outward pointing rate vectors, it would have done so and have been larger.  In 

the simplest terms, the AR must be as large and as full as possible.  

 

     In order for visualization strategies such as dimension reduction to be valid, they must preserve the 

convexity and zero-growth properties of the AR. The effects on convexity and zero-growth of 

coordinate system choice and dimension reduction are examined next.  These are not intended to be 

rigorous mathematical proofs, but rather intuitive arguments. 

 

     First, consider the zero-growth property.  This is really a characteristic of the underlying chemical 

system and is unaffected by the visualization.  No changes to visualization properties can change the 

underlying chemistry governing the problem.  As an analogy, consider a three-dimensional volume, 
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such as a balloon filled with air.  Projecting the solid into any 2-dimensional plane or sectioning it with 

any plane will not change the solid’s underlying growth characteristics.  Granted, the sections or 

projections will have different sizes and shapes, depending on the plane, but the boundary is still 

closed and cannot grow on its own without some underlying physical or chemical change, such as 

more air being added to the balloon.  The choice of visualization can not change the underlying 

science.   

 

     Next one must examine how convexity is affected by dimension reduction, both by sectioning and 

projecting.  In the case of sectioning, convexity is preserved because the section is a subset of the full 

shape.   A subset of a convex shape is still convex. Projecting does not maintain a one-to-one 

mapping of original points to projected points, as it “flattens” dimensions so that many points in the 

original data may map to just one point in the projection. The result is that points that used to lie on the 

convex boundary of the original shape may lie in the interior of the projected shape.  This does not 

pose a problem however, because the boundary of the projected shape will still be convex.  The 

resulting interior points can simply be ignored realizing that they are projections of originally convex 

points, and only the projected boundary need be checked for convexity. If the original volume was 

convex, all projections will result in convex boundaries, with perhaps extra interior points. 

 

     Convexity under tetrahedral coordinates also must be considered.  Tetrahedral coordinates are 

normalized mole fractions, and this normalizing operation may “shift” points inward, making them 

appear non-convex.  In both sample problems however, all tetrahedral views appeared convex, so it 

would appear based on this small sample study that convexity may be preserved.  Furthermore, 

normalization is a linear operation, which should preserve convexity.  This is an area for further study, 

hopefully resulting in rigorously-proven theorems. This work thus far provides a starting point for 

suggested theorems worth further examination.  
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     Convexity needs to be analyzed in the other direction as well. That is, if all projections and sections 

are convex, the question is whether this is sufficient to show that the original n-d shape is convex.  The 

number of sections is infinite, so examining all section views is impossible, but the number of 

projections is finite. For example, in a four component system such as sample problem 1, four 

projections are possible, assuming order of components does not matter. However, checking only the 

projections is not sufficient to guarantee convexity of the n-d shape. A concavity in the original can 

occur in what becomes the interior of a projection and be missed. Only by checking all sections, or 

sufficiently many in a practical sense, can convexity of the original shape be concluded. This may 

become the definitive reason for requiring that the sectioning paradigm to be completed as another 

method of dimension reduction. 
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3.7  Convex Hulls Revisited 

 

     In Section 2.3.8, convex hulls were introduced and the distinction between 3-d and n-d hulls was 

made.  Three uses for convex hulls with respect to ARs were listed, and more details about how this is 

actually done are provided in this section. The convex hull algorithm is used with permission from Ken 

Clarkson. (Clarkson, 2003) A header comment containing his name, disclaimer, etc. is included in all 

source files that access his code, per written instructions in that header. His source files, 

approximately 2000 lines of code, have been included in the AR visualization and modified from a 

stand-alone application to a function directly invoked from within the application. The generous sharing 

of his work is deeply appreciated. 

 

3.7.1  View-Based 3-d Convex Hull 

 

     A 3-d convex hull is generated to draw a semi-transparent “skin” around the AR, in order to visibly 

identify concavities or interior points. If the AR is visibly inside of the convex hull in any of the 

projections, two possibilities exist.  Entities may exist inside of the convex hull provided the boundary 

still coincides with the hull.  This is explained in Section 3.6.2 due to the many-to-one mapping of 

projection.  Entities that were on the original n-d convex hull may appear interior in a given projection. 

Otherwise, if the boundary indeed does not coincide with the convex hull, then the AR is not convex 

and needs to be extended by adding mixing operations.   

 

     Besides using a 3-d hull as an overlay, it may be used as a substitute for surface rendering when 

existing curves cannot be readily triangulated. In the first sample problem which was computed 

numerically from a well-known chemical system, curves were listed in the input file in order so that 

surfaces could be triangulated from them. However, in the second sample problem, curves were listed 

in no logical order, and there was no knowledge of adjacency or ordering of curves within surfaces. 

Triangulation would have been difficult at best. The most reasonable and direct solution was to take all 
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of the points from the curves, and to construct a 3-d convex hull from all of them in any view in order to 

visualize the attainable region. 

 

     To increase execution speed, some minor changes were made to the interface to Ken Clarkson’s 

algorithm.  As it appeared originally as a stand-alone program, the routine took its input points either 

from the keyboard or from an input text file, and sent its output, a list of facets, to either the display or 

an output file.  As a function call within the visualization application, it made more sense to take the 

input directly from the application’s list of rendered vertices, and likewise output the facets directly as a 

list of to-be-rendered triangles. This saved the overhead of writing input and output files of points and 

facets. 

 

     It was noted earlier that a splay tree is the data structure used by Clarkson. It is an efficient data 

structure but even so, constructing the view based convex hull in real-time is expensive. The first 

sample problem contained an input set of roughly 5000 points, and the 3-d convex hull was completed 

in about 5 seconds.  The second sample problem contained an input set of approximately 27,000 

points, and took about 15 seconds to run.  Tests were performed on a 1.6 GHz Intel Pentium-4 with 

256 Mbytes RAM.  This operation only needs to be updated when the coordinate system properties 

change, not upon real-time viewing transformations such as pan, zoom, or rotate, so with an 

appropriate progress indicator, the application can still be used interactively. 

 
 
3.7.2  General n-d Full Convex Hull 

 
     When researchers produce candidate AR data such as in the second sample problem, copious 

amounts of extraneous data can be produced, and it is useful to reduce the input file size by filtering 

the data through a pre-processing step.  To accompany the visualization application, a pre-processor 

filtering utility was written.  Its input is a “.ard” data file, and the output is a filtered “.ard” data file with 

extraneous points removed. Points are checked for minimum resolution, and points nearer to each 
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other in n-d distance than the minimum are removed.  Then a full n-d convex hull is constructed based 

on Clarkson’s code, and points not lying in the convex hull are also removed. 

 

     The results of the pre-processing can be dramatic.  Using a minimum resolution of .001 in the 

second sample problem, the data size was reduced from approximately 250,000 points to about 

27,000, nearly a 10:1 reduction.  The operation is an expensive one, O(n2) because of the minimum 

resolution check, and the original data set had to partitioned into 5 subsets to be able to run through 

the pre-processor.  Larger file sizes (such as running the entire data set as one large file) could not be 

handled because of insufficient RAM. Once the program nearly exceeds main memory capacity and 

begins swapping pages to disk, no further progress is made. However, with appropriate partitioning of 

the original file into smaller files, each roughly 50,000 point set took about 45 minutes to run on the 

same 1.6 GHz Pentium-4 with 256 Mbytes RAM. Note that it is valid to partition a convex hull problem 

into subsets, provided that a final convex hull is found from the resulting sub-hulls. 

 

     Aside from filtering out interior points, points are also removed when they are nearer to each other 

than the pre-set minimum resolution.  Data generated by simulations (or computers in general) may be 

more precise than is necessary. One must consider the final use for the data and then judge how 

much precision actually makes sense.  For example, in the second sample problem input points were 

supplied in a 16 decimal place format. Considering that most display devices have approximately 1000 

pixels in each direction, (eg., 1024 x 768) precision beyond .001 is unnecessary because points closer 

than that will likely map to the same pixel anyway. 

 



60 
 
 

  

3.8  Surface Rendering 

 

     A variety of methods exist for constructing a visible surface from a mesh of points, and several 

approaches were tested for this project.  Internally, curved surfaces such as the PFR regions are 

stored as families of curves of n-d points that are consecutive in residence time, ".  In order to render a 

surface consisting of several curves, various points are connected by polygons.  Triangles are usually 

used because they are planar and because graphics hardware is often optimized for drawing triangles.  

Triangulation was chosen for these reasons, but the question is how to go about choosing vertices for 

each triangle. All of the available points are used, ie., the algorithm never skips any data and never 

adds any extraneous data.  Figure 27 below at left shows a typical strip of triangles between two 

neighboring curves. 

 

 

 

 

 

 

 

Figure 27. Triangulating between two curves 

 
 

     Note that the trajectories in general will curve arbitrarily in space, and not be parallel or planar.  

(Each triangle of course is planar.)  Figure 27 above right is a more general example.  Note also that 

points along a curve in general are not equally spaced, nor do curves necessarily contain equal 

numbers of points. 

 

     Triangles will approximate the surface most closely when they are fairly regular, and will distort the 

surface when they become too skewed.  In “regular” triangles, edges connect roughly nearby points, 

and in “skewed” triangles, connecting edges span points far apart on neighboring curves and 
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approach degeneracy as the points approach co-linearity. Figure 28 below, left and right, shows 

regular and skewed triangulations, respectively. 

 

 

 

 

 

 

 

Figure 28. Regular and skewed triangles 

      

     Both diagrams use the same data points, but notice how the order in which vertices are chosen 

affects the quality of the triangles.  The right hand diagram results in long, narrow triangles, which will 

result in a poor surface. The algorithm used for triangulation is as follows: Consider a set of two 

neighboring curves as above.  Starting at the same end of both, connect the end points to form the 

base of a triangle.  Then, consider as possible vertices the next point on either curve.  Use a suitable 

metric to choose one or the other next point as making a better triangle.  Connect the diagonal chord 

which crosses between trajectories, to complete the first triangle.  This crossing chord becomes the 

new base for the next triangle.  Repeat the process, always considering as possible vertices the next 

unused point in each trajectory, and always choose the “better” one.  Finally, at the end, one trajectory 

will be completed and the other may still have some unused points at its end.  Form a fan of triangles 

from the end of the completed trajectory to each unused point in the other. 

 

     At each iteration, two candidate points exist, one from each curve, and the question is, what metric 

should be used to choose the better triangle.  A good metric will keep the resulting triangles well-

behaved, and a poor metric will skew them more and more.  Several unsuccessful metrics were 
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attempted, among them minimizing the resulting triangle perimeter, minimizing the ratio of the longest 

to shortest side of the resulting triangle, and minimizing the length of the crossing chord.  

 

     Best results were achieved by minimizing the difference of path length fractions along the two 

trajectories, where the path length fraction is expressed as a fraction of the current path length divided 

by the total path length.  Intuitively, if one trajectory is 10% complete, then the other should also be 

about 10% complete, where the percentage completed is computed using path lengths (not numbers 

of data points). Thus, the metric used at each iteration is to choose points that will minimize the 

difference between path length fractions, where path length is computed in the 3-d projection space. 

(not the full n-d problem space) Recall from Section 2.3.7 that a path or curve is a 1-d parametric 

entity, in this case consisting of a set of 3-d points. Triangles are also checked for singularity (collinear 

points) by testing for zero cross-product of two sides. 

     The path length fraction works well in all cases seen so far. The figure below shows examples of 

successful and unsuccessful triangulations from the development of the final algorithm. 
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Figure 29. Good and bad triangulations 
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3.9  Lighting 

 

     Lighting can add realism and aids understanding, especially for depth perception. 3-d depth 

perception is accomplished through 2-d depth cues such as apparent size, perspective convergence, 

and shading. Without lighting, each rendered surface has its own self-luminous color, but no shadows 

are cast so the color is uniform across the surface.   Other depth cues still help in visualizing the 

surface, but shading adds a new degree of understandability, albeit at a performance cost.  The 

application originally began without lighting (self-luminous) to maximize performance, but once lighting 

was added, it was clear that the trade-off was well worth it. 

 

     Having said that, lighting is a complex topic with a multitude of possibilities, many of which are not 

being used here.  A simple diffuse white directional light is all that is employed, where the light rays 

are all parallel as if the source were infinitely far away.  Each surface has a defined diffuse material 

color, so that it reflects the same color diffuse light.  Diffuse light is reflected in all directions equally, as 

opposed to specular light that is reflected in a preferred direction, creating shiny highlights. The light 

source maintains its relative direction to the viewpoint, shining downward from the viewpoint at all 

times so that surfaces facing normal to the view appear brightest. A slight amount of ambient light is 

also added to minimize glare. 

 

     A simple lighting model is used not only for performance reasons, but also to avoid distorting or 

distracting from the data.  Tufte stresses the importance of maintaining data integrity and focus on the 

data, as opposed to obscuring data or replacing it with “pretty pictures”.  (Tufte, 1983; Tufte, 1990; 

Tufte,1997)  In keeping with that theme, lighting is used only to help enhance depth perception, but 

without features such as specularity that would change surface appearance from the basic colors that 

are defined in the data file.  Later, if other visible features such as texture or specularity could be used 

in a constructive way to represent additional dimensions, then that would justify their use. 
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     As a final note, one drawback of using lighting is that shading is created where it may not be 

intended.  Since surfaces are triangulated, each triangle has a slightly different normal direction than 

its neighbors, and light falling on these faces gives the surface a more faceted appearance than when 

it was all the same intensity.  Hence, the triangular nature of the surface stands out more, even if the 

surface should be theoretically smooth.  Smooth shading, also known as Gouraud shading, is being 

used to interpolate the triangle’s color between the three respective colors of the vertices. (Woo, et al., 

1999) The condition can be further improved by interpolating the normals at each vertex between all of 

the triangles that share the vertex, as in Phong shading. (Foley et al., 1997)  Presently this is not 

done, as all three of the triangle’s vertices have the same normal, that of the triangle’s plane. 
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3.10  Data Probing 

 

     Data probing is the opposite of data rendering.  Instead of starting with numerical values and 

producing a rendered image, probing begins with a rendered image and returns numerical values at 

desired places.  The method used is to construct a ray extending from the mouse or wand, and 

intersect it with all of the visible objects in the current view, as a ray tracer would do.  This is done in 

the order of points first, then curves, and lastly surfaces. 

 

3.10.1  Probing Points and Curves 

 

     The first objects to be checked during probing are the “points of special interest.”  These are the 

labeled points such as feed point and origin that are identified in the data file.  They are relatively few 

in number, and are not to be confused with the numerous “ordinary” points that comprise curves.  

Finding whether a point lies on a ray is straightforward; the only problem is that chances are that none 

of the points lie exactly on the ray.  However, the point on the ray which is closest to the given point 

can be found (Glassner, 1998) and then the distance of closest approach is computed.   This distance 

must be less than or equal to some pre-determined probing radius in order to be considered a hit.  

One final problem is that the probing radius is a floating-point distance in world coordinates, which 

should vary depending on the current view transformation.  To be useful, the probing  radius  should  

be  equivalent to some small number of pixels in window coordinates (5 pixels,  

for example, regardless of the current view).  Fortunately, the OpenGL UnProject() command (Woo, et 

al., 1999) can be used to compute this probing radius for any view, based on the number of pixels 

selected as the margin of probing error.  Finally, in case the ray intersects more than one point within 

the probe radius, the closest point to the viewer is selected. 

 

     Curves are handled similarly.  All curves are composed of paths of short lines, and probing the 

curves amounts to finding the intersection of a line with the probe ray. Once again, the chances of two 
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lines intersecting exactly in 3-space are small, but from Glassner (Glassner, 1998) one can compute 

the respective points of closest approach on the line and the ray, where they are nearest to each 

other.  Again, “hits” are considered to be locations where the distance of closest approach is within the 

probing radius, and from those curves the closest to the viewer is selected.  

 

3.10.2  Probing Surfaces 

 

     Since surfaces are rendered as triangles, probing surfaces equates to probing all the visible 

triangles. The ray usually intersects more than one triangle, in which case the point of intersection 

nearest to the viewer is the result.  The n-dimensional concentrations of that point are then displayed.   

 

     Finding the point of intersection of a ray and a triangle consists of several sub-steps, which are 

outlined in the pseudo-code below (see actual application C++ code, file “probe.cxx” for more details) 

 

a. describe the ray in terms of a parameter t as:  ray = base point  + t * direction vector 

b. construct a plane (ax + by + cz + d = 0) containing the triangle 

c. find the point of intersection of the ray with the plane (if it exists) by substituting the ray 

equation into the plane equation and solving for t 

d. determine if the point of intersection of the ray with the plane actually lies within the interior of 

the triangle 

     The last step, finding whether a point lies within a triangle given that it lies in the triangle’s plane is 

actually a sub-problem in itself.  Foley and Van Dam (Foley et. al., 1997) give a well-known algorithm 

for determining whether a point lies in a general polygon, but here a more specific algorithm for 

triangles is used from Glassner. (Glassner, 1998) 

 

     Finally, the result of the data probe is a 3-d point in (x,y,z) coordinates that is a projection of the 

original n-d data point.  The user (eg. chemical engineer) however wants to know the concentrations at 
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the probed point in terms of the n-d problem space, not the projected view space.  The net result is 

that another step has to occur before the information can be presented to the user: the probed (x,y,z) 

point in the view space has to be mapped to the original problem space.  In theory, the original 

concentrations or mole fractions can be computed, but the application would have to know the 

stoichiometry of the chemical system.  This information is not stored in the attainable region data file 

by design because it would be difficult to encode, so the solution is to include a pointer with each 

vertex in the triangulation to point back to the original concentration problem data. 

 

     This provides the n-d concentration at any triangle vertex, but what if the probed point lies in the 

interior of a triangle, a more likely possibility.  The data must be interpolated between the three 

vertices, based on the location of the probed point as follows. Given the triangle (V0,V1,V2) in Figure 

30 and the probed point P, construct a line from any vertex, say V0, through P and intersect it with the 

opposite side of the triangle to get point A.  Linearly interpolate the n-dimensional concentration data 

from vertices V1 and V2 to get concentration data at point A, and similarly interpolate the 

concentration data between point A and vertex V0 to get the exact concentration data at the probed 

point P.  If Ci is the n-d concentration at Vi, and | Vi – Vj | is the 3-d distance between Vi and Vj, then: 

      

      

     CA = ( C1 |V2 – A| + C2 |A – V1| ) / |V1 – V2|          (1) 

     CP = ( C0 |A – P| + CA |P – V0| ) / |A – V0|          (2) 

     CP = ( C0 |A – P| |V1 – V2| + C1 |V2 – A| |P – V0| + C2 |A – V1| |P – V0| ) / |A – V0| |V1 – V2|    (3) 
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Figure 30. Interpolating probed data 

 

 

 

3.10.3  Labeling 

 

     When probing the visualization, the chemical engineer is asking two questions.  What are the 

coordinates of a desired point, and how (by what combination of chemical processes) can it be 

attained.  The first question is answered by displaying the n-d concentration of the probed point, and 

the second is answered through the use of labels. Recall that there are four unit operations (CSTR, 

DSR, PFR, and mixing) which can be combined in any fashion.  Since every point on the boundary of 

the AR is attainable, the question is finding the sequence of unit operations to reach the given point. 

The sequence is a path along the boundary of the AR beginning at the feed point and terminating at 

the desired point.  This path can follow pre-defined trajectories (eg. the CSTR trajectory) or can lie 

within surfaces (eg. family of PFR trajectories), can pass through points of special interest, etc.   

 

     There is no unique solution for constructing a path along the boundary from one point to another.  

A reasonable solution may be to follow the most direct route in order to minimize the number of 

operations, but the exact path choice can still be a complex optimization problem. The scope this work 

is to display the space of all possibilities, to provide a basis for rational decision making. 

       

P 
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      Returning to the issue of labeling, various regions of the AR correspond to particular operations.  

For example, a particular curve may denote a CSTR reactor whose input is the feed concentration, 

and a particular surface may denote a family of PFR reactors whose inputs are points along the CSTR 

trajectory.  When a probed data point is displayed, its label is shown along with the concentration.  

Besides labeling probed points, all visible points, curves, and surfaces are identified with leader lines 

and labels in the view.  The labels are stored in the data file format, and technically can be any string.  

However, labels are intentionally chosen to indicate the type of operation or sequence of operations by 

which the surface, curve, or point can be achieved.  For example, a surface labeled “mix(Q,pfr(F))” 

indicates that points on this surface can be achieved by mixing a concentration of point Q with the 

output of a PFR reactor whose input is the feed concentration, point F.  Continuing with this example, 

if point Q is at the end of a curve labeled “F->pfr”, then it can be attained through an infinitely long PFR 

reactor whose input concentration is the feed.  See Figure 31 below. 
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Figure 31. Use of labels 
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3.11  Grid Scale Values 

 

     In any graphing application, even graphing by hand with pencil and paper, the choice of 

appropriate scale values is critical to a good result. Scale values are minimum, maximum, and either 

scale step or number of steps for each axis. There are two parts to this problem: providing the user an 

intelligent way to dynamically adjust scale values, and having the application auto-scale the grid upon 

initially reading in the data. The dialog box shown below is used to adjust values: 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 32. Scale values dialog box 

 

      In orthogonal coordinates, the user selects the desired component on the left and then adjusts any 

of the values on the right.  Values that are tied together (such as number of grid steps and size of grid 

step) are updated automatically when one or the other is changed.  In tetrahedral coordinates, all 4 

axes have the same scale values, and the minimum and maximum are 0.0 and 1.0 by definition.  So 

the only choice is number of grid steps or size of grid step, which again are tied together.  Finally, a 

“restore defaults” check box serves to return all values to their initial states. 
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     The other aspect of scale values is the determination of the initial defaults upon reading in a new 

data set.  One method initially considered was storing the values within the data file format, although 

that was rejected because it places the burden on the researcher instead of the application.  So, it was 

decided to program the application to compute scale values automatically. A crude method is to have 

the program scan the data and find the extents in each axis, and then divide each axis into a suitable 

number of steps such as 10.  While this certainly “works”, the results are not always intelligible.  When 

humans graph, we tend to make scale steps “nice” numbers such as powers of ten (.01, .1, 1, 10, …) 

or perhaps powers of two or five (.2, .5, 2, 5, …).  So, after this initial rough computation, the scale 

step is rounded to the nearest power of 10, 2 or 5, and the minimum and/or maximum are adjusted to 

be integral powers of that step. For any axis, the following pseudo-code does this: 

 

// find initial step, min and max assumed to be 

// extents of data (previously found) 

dinit = | max – min | / 10 

// adjust step 

d10 = 10 ^ (round(log10(dinit))) 

if | dinit – 2 * d10 | < | dinit – d10 | 

   dfinal  = d10 * 2 

else if | dinit – 5 * d10 | < | dinit – d10 | 

   dfinal  = d10 * 5 

else 

   dfinal = d10 

// adjust min, max to be integral amounts of step 

min = floor (min / dfinal) * dfinal 

max = ceil (max / dfinal) * dfinal 
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4. SAMPLE PROBLEM 1 

 

     The first sample problem around which the application was initially designed is a classic in AR 

literature. J.G. van de Vusse first published this problem in 1964, (van de Vusse, 1964) and the 

version used here is taken from Feinberg and Hildebrandt. (Feinberg and Hildebrandt, 1997)  The 

chemical system is defined by the following equations. 

 

4.1  Equations and Rate Laws 

 

Chemical equations: 

A1 ! A2   k1 = 1 [s-1] 

A2 ! A4  k2 = 1 [s-1] 

2A1 ! A3  k3 = 10 [m3 / (mol s)] 

Let ci be the concentration of Ai 

Feed point: c1 = 1.0, c2 = c3 = c4 = 0.0 

Rate laws: 

rA1 = -r1 – 2r3 = -k1c1 –2 k3c1
2 = -c1 – 20c1

2   [mol / (m3 s)]   (1) 

rA2 = r1 - r2 = k1c1 – k2c2  = c1 – c2        (2) 

rA3 = r3 = k3c1
2 = 10 c1

2         (3) 

rA4 = r2 = k2c2 = c2       (4) 

 

     Through a combination of computations and assistance from a differential equation solver known 

as Polymath, (Cutlip, 2003) data points were generated for a CSTR trajectory, DSR trajectory, PFR 

trajectories, and mixing regions.  The details of those derivations appear in Appendix D. 
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4.2  Results 

 

     The resulting visualization is shown below, in orthogonal coordinates using the projection paradigm 

with components A1, A2, and A3 plotted on the X,Y, Z axes respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 33. Sample problem 1 results 

 
      

      In (Feinberg and Hildebrandt, 1997) on page 1639, a similar image appears.  The differences lie 

mainly in different scaling factors used for the three axes, making their view appear taller and 

narrower.  However, the coordinates of key points given in the paper are identical to those generated 

by the application, to four significant digits. The use of labels to identify processes is similar as well,  
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although Feinberg and Hildebrandt’s labels are graphical while the labels generated by the program 

are text based. 

     However, unlike a static image in literature, the computer application produces an infinite variety of 

views through viewing transformations such as panning, zooming, and rotating the view. Moreover, 

different components may be assigned to various axes, and the system may be viewed in tetrahedral 

coordinates as well.  For example, Figure 34 below shows tetrahedral coordinates with A2, A3, and A4 

plotted as X,Y,Z respectively and A1 plotted as the remainder. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 34. Sample problem 1 tetrahedral view 

 

     Features of the AR described in Section 2.4.5 are easily identifiable in the resulting visualization.  

Ruled mixing surfaces and curved PFR surfaces are present, as well as smooth and sharp connecting 
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curves.  It is instructive to refer back to that section while running the application and note the 

correspondence between AR theory and practical results. 

      The van de Vusse problem served as a foundation around which the “core” of the application was 

developed. Through this problem, many program features were developed and tested, including n-d 

architecture, dimension reduction, tetrahedral coordinates, standard file format, data probing, 

interactive viewing, and the user interface.  It is a classic AR problem, and the fact the results 

generated by the application matched other published results was encouraging.  The envelope of AR 

visualization was extended through some of the aforementioned features, but van de Vusse has been 

visualized many times before using other methods, albeit at the cost of discarding at least one 

variable. Even our collaborators have such a visualization in Appendix B, generated using MATLAB 

(MATLAB, 2003).  A second, more demanding example was required. 
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5. SAMPLE PROBLEM 2 

 

     Although the Van de Vusse problem is a good first test, a second data set was sought for several 

reasons.  First, higher dimensions were needed to further test the dimension reduction paradigms for 

both function and comprehension.  Second, one of the project goals from the outset was to collaborate 

with other researchers who are developing AR simulation algorithms that produce high-d results but 

who are unable to visualize those results.  The hope was to combine EVL’s visualization expertise with 

other scientists’ AR expertise for the advancement of both disciplines.  Lastly, a second data set not 

created by the program author would serve to further test the application in ways that could not be 

predicted with locally produced data. Collaboration began early on with the University of the 

Witwatersrand in Johannesburg, South Africa, because of the AR research conducted by several of 

the faculty members. (Hildebrandt et al., 1990; Glasser et al., 1994; Godorr et al., 1994)  The second 

sample problem was provided by Tumisang Seodigeng of the Center of Process and Material 

Synthesis, School of Process and Materials Engineering, University of Witwatersrand.  It is a five 

component system, with components named A,B,C,D,E. Documentation of the data set is included in 

Appendix B. 

 

     Although the researchers’ interest is in 4 out of the 5 components, all 5 dimensions are included in 

the visualization to further test the application and perhaps to provide some results in the fifth 

component that may prove useful.  It is a common strategy to reduce the dimensionality of a problem 

early on in order to simplify visualization of the results, but this should not be necessary given a good 

high-d visualization program.  The risk of eliminating dimensions that seem unnecessary or irrelevant 

to the results is that they actually may provide useful information that would never be seen otherwise.  

So, the approach in this thesis is to store all dimensions, and let the user make dimension reduction 

decisions later through the use of the program and the generation of visualized views. 
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One of the features that became necessary through the second sample problem is the convex hull  

generation; both 3-d view-based convex hulls and full n-d hulls were necessary for the reasons 

outlined in Sections 3.7 and 2.3.8. Figure 35 shows the visualization without the view-based 3-d hull 

turned on, and Figure 36 is the same viewpoint with the hull visible.  Both figures are shown in 

tetrahedral coordinates, with components A,B,C assigned respectively to the X,Y,Z axes. D and E 

together make up the remainder axis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 35. Tetrahedral view of sample problem 2 
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Figure 36. Tetrahedral view with visible convex hull 

 

     Characteristics of the chemical system can be spotted at a glance with the AR visualization.  For 

example, notice how little of component E is produced by the system by observing how “flat” the AR is 

in the tetrahedral view in Figure 37 below.  (Component E corresponds to the upper vertex of the 

pyramid).  These are exactly the sorts of patterns that are obvious in a good graphical visualization but 

difficult to discern in tabular data. Figure 38 is one more screen shot of the second sample problem, 

this time in orthogonal coordinates plotting components B,C,D with a visible convex hull. 
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Figure 37. Tetrahedral view with trace amounts of component E 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 38. Orthogonal view of B,C,D 

      

      

     This second problem further enhanced current AR visualization techniques with the addition of n-d 

and 3-d convex hulls. It also provided more opportunity for collaboration and testing of the application 

by other parties. The features developed for the first sample problem together with those added for the 

second combine to make the application a useful tool for the visualization of high-d ARs.  Compared to 

the survey of visualizations in Section 2.4.6, the ability to view a 5-d problem in 5-d space is a 

significant step in AR visualization. Our collaborators had no way to previously view these results. 
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     Feedback from Tumisang Seodigeng of the University of Witwatersrand has been positive. The 

following excerpts are from personal communications via e-mail after sharing results and the program: 

“Thank you for the program and notes. The first set was very fascinating, I like the idea of switching 

from one 3D projection to the other with ease (say ABD to ABE) … I have looked at the package Tom 

sent me some time ago. It was impressive; he managed to sort out the data separation problem.” 

(Seodigeng, 2003, personal communication)  The data separation problem Seodigeng refers to is the 

fact that points produced by his simulation were disorganized and thus could not be used to render 

surfaces using triangulation methods, ie., could not be separated into adjacent curves.  This was a 

driving force for inclusion of convex hulls in the application.  

 

     One final distinction between the second and first sample problems is data size.  The van de Vusse 

example consisted of roughly 5000 data points, while the second problem consisted of around 

270,000 points.  This was another factor that necessitated the use of an n-d convex hull in order to 

pre-process the data set and reduce its size to around 25,000 points, a size that could be viewed 

interactively on current computer hardware.  As ARs grow to higher dimensions and file sizes and data 

set sizes increase, the techniques developed here can be used to make large data more manageable. 
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6. CONCLUSION 

 

     Background research having been conducted, concepts have been applied to develop a working 

interactive visualization tool capable of viewing n-d ARs. The application has been tested through two 

sample problems, and results have been shared with collaborators. This chapter summarizes 

knowledge gained and plans for future work. 

 

6.1  Summary 

 

     Engineering problems that rely on graphical solutions work well in small numbers of dimensions 

such as 2 or 3, but are difficult to visualize when the dimensional space becomes large.  However, 

scientific and engineering actual problems are multi-dimensional by nature, and graphical 

visualizations are desired because they leverage the visual perception of the human mind to quickly 

see patterns and draw conclusions about the data.  

 

     One such graphical method in the domain of chemical reactor design synthesis is the attainable 

region, or AR. The AR is a closed volume in n-d space that represents all possible chemical 

compositions that can be attained from a chemical system, given some starting feed composition. 

After research of chemical reactor design synthesis and a thorough survey of AR literature, principles 

of computer science and scientific visualization were combined to produce a working computer 

application capable of visualizing n-d ARs.  The application program is capable of reading AR data 

files of the format “.ard” in general numbers of dimensions, and producing views through dimension 

reduction. Two choices of coordinate systems are available, orthogonal and tetrahedral, along with the 

capability to view selected combinations of three or four components at a time. A 3-d convex hull 

feature is included for checking the AR for convexity and for viewing non-ordered surfaces, and n-d 

convex hulls are also utilized in a pre-processing filtering utility program. Other aspects of the 

application include data probing, interactive view transformations, grid scale adjustment, color choices, 

and a functional user interface including a comprehensive help system. 
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     Two sample problems were used to test the application and develop it further. The first problem, 

the 4-d van de Vusse system is a classic in AR literature.  After successfully completing this, a more 

difficult second test problem was sought. From the outset, one of the goals of this work has also been 

to collaborate with researchers in the field, because they are the real AR experts.  A partnership was 

formed with the University of Witwatersrand, South Africa, and a second 5-d data set from research 

currently being conducted was tested.  The data was more demanding than the first problem, and 

forced several new features to be included in the application program. Successful visualizations were 

shared with the researchers, along with a copy of the application itself.  Communication continues 

between the research parties, and the collaborative effort has benefited all involved. Preliminary 

feedback from collaborators has been positive. Moreover, a personal visit from Mr. Seodigeng to UIC 

and EVL is expected later this year, where we expect to meet for the first time in person and discuss 

findings and future work.  The AR collaboration and visualization is expected to continue well beyond 

the completion of the master’s thesis. On a personal note, the opportunity to aid other researchers in 

their work and the ability to contribute to scientific research in a tangible way has been personally very 

rewarding. 

 

6.2  Accomplishments 

 

     The main accomplishments of this thesis can be grouped into two categories: major contributions 

and other accomplishments. Major contributions enhance the current state of AR visualization. Other 

accomplishments perhaps do not extend existing work in and of themselves, but were necessary in 

order to achieve the major contributions and are worthwhile items of knowledge gained. The table 

below summarizes these categories. 

 

 

 



85 
 
 

  

 

 

 

TABLE II 

MAJOR CONTRIBUTIONS AND OTHER ACCOMPLISHMENTS 

 

 

 

6.3  Future Work 

 

     As in any research, the work is never complete.  After 1-1/2 years and over 7000 lines of code, the 

project seems to have barely begun. Now that the PC version is complete, which is capable of 

producing only one view at a time, the next step is to take full advantage of the VR hardware that EVL 

has available in order to display multiple views simultaneously. Future work to be done includes the 

following: 
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• Completing the sectioning paradigm of dimension reduction 

• Porting the application to another medium such as a tiled display (Perspectile) or  auto-stereo tiled 

display (Varrier) 

• Including simultaneous display of multiple views (appropriate for a tiled display) 

• Allowing any combination of components to be displayed on any axis, similar to the function of the 

tetrahedral remainder axis in the present implementation 

• Completing the analysis of convexity properties during projection in the orthogonal and tetrahedral 

coordinate systems 

• Continuing collaboration with researchers to further evaluate the application and determine further 

needs 
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APPENDICES 

 

Appendix A:   Data File Format 

 

     The following is a specification for version 1.0 of the AR data file format.  The format is detailed by 

way of  a sample valid “.ard” (attainable region data) file: 

 

# 

# 

# File format for attainable region data 

# 

# author: Tom Peterka 

# reviewed by: Dr. John Bell 

# date of last revision: 4/7/03 

# 

# The following is a format for reading / writing n-dimensional attainable region 

# geometric data in a text file, which our n-dimensional visualizer will read in 

# order to construct the boundary of the attainable region 

# 

 

 

# general notes about the format: 

 

# comments are preceeded with with a pound sign and continue to end of line 

# file name ends in .ard (attainable region data) 

# blank lines are ignored 

# keywords are not case sensitive 

# the rest of this document is organized as if it were a sample data file 
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# a short header section containing the file version number, the number of dimensions 

# and the names of the dimensions in the  

# of the problem space must appear first in the file 

 

version 1.0        # version number 

 

dimensions 4          # number of dimensions in concentration space (ie, number of components) 

A # the first dimension in this example is called “A” (can be anything of the user’s choice) 

B 

C 

D 

 

# color may appear any time (optional) and will be effective modally until changed 

# default is white or black, depending on background 

 

color 1.0 0.0 0.0    # red color ( r g b format, each color component ranges from 0.0 to 1.0) 

 

# this next section defines points of special interest 

# these are not the multitude of points which make up numerous trajectories and 

# surfaces, but rather individual points which can be labeled and highlighted in 

# the output visualization (eg: the feed point and a few other significant points) 

 

point npoints 

# point is the name of this section 

# npoints is the number of points in this section  

# next will follow ‘npoints’ number of lines of the following format 
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a b c d [T/F] [label]    

 

# a b c d are the component concentrations, replace with floating point numbers or scientific notation 

# label is optional, and will be displayed next to the point 

# [T / F] is a visibility flag, T = draw the object, F= don't draw 

# visibility is optional, except when a label is used, visibility is 

# mandatory (to enable parsing) 

 

color 0.0 1.0 0.0       # switching to blue color, for example 

 

a b c d [T/F] [label] # labels may have spaces, and extend to the end of line 

a b c d  # default visibility is T, no label for this object 

... 

 

# this next section defines curves 

# curves are used in a general sense to include: a individual point, a line segment 

# (2 points), or a trajectory (any number of points) 

# curves may be of the following types: mixing line segment, CSTR trajectory, 

# DSR trajectory, or PFR trajectory 

# note that any of the above curve types may be degenerate and have only one point 

 

mix npoints [T/F] [label]  # mixing line segment, 1 <= npoints <= 2 

a b c d 

a b c d 

mix npoints [T/F] [label]   # each curve individually identified by a new command 

a b c d 
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a b c d 

 

cstr npoints [T/F] [label]    # CSTR trajectory, npoints >= 1 

a b c d 

... 

 

dsr npoints [T/F] [label]   # DSR trajectory, npoints >= 1 

a b c d 

... 

 

pfr npoints [T/F] [label]   # PFR trajctory, npoints >= 1 

a b c d 

 

# visibility is used in the same way as above in the point section 

# label is similar, except that labels are required whenever the curve will be referred to below in a 

surface 

# this is typical, so most of the curves will have labels, and these labels are not displayed in the 

visualization 

... 

 

# this last section defines surfaces 

# surfaces are a triangulation of 2 or more of the above curve types 

# if the number of curves is > 2, then the curves must all be of the same type 

# if ncurves = 2, then the curve types may the same or different 

# if different, then the result is a mixing surface between the 2 curves 

# if ncurves > 2, then the curves must be listed in order (adjacent in the surface) 

# ie,  the surface will be triangulated by taking two adjacent curves at a time 
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surface ncurves [T/F] [label] 

label 1  # label of a curve 

label 2  # label of a curve 

... 

# default color for surfaces is the average of constituent curve colors 

# (specific color can always be given with the color command (recommended)) 
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Appendix B:  Sample Problem 2 Materials 

 

     The following two documents were provided by Tumisang Seodigeng. They are re-printed here for 

reference as supporting documents for the second sample problem, without any corrections or 

modification. The entire documents are included, including any fonts, figures, etc. that appeared.  

Figures are not listed in the table of figures and fonts may not be the same as in the thesis text.  No 

attempts were made to modify any of this data; it is meant to be included as a whole, in its original 

form.  The documents were received as personal communication, not as published or copyrighted 

material.  

 

B.1  Initial Documentation of Sample Problem 2 Dataset 

 

      The following is an initial document that accompanied the data set (TP) 

 

The 4D study case  

 

A  k1f !k2r  B k3"C 

!k4                     k5f"k6r 

#D   E 

 

 

We are looking at the ABDE space.  We built the candidate ARs using the algorithm we call ‘DSR Algorithm’.  

 

The DSR algorithm traces out the optimal DSR (Feinberg 2000 a and b) using constant alpha values. We believe that a DSR in 

4D is a surface, (as it is a curve in 3D). 

 

My algorithm constructs 3D ARs successfully. These are the results for a 4D trial. I am working in the ABDE space. 

 

The attached files are  

cstr.txt     contains cstr loci from feed. Columns are [ A B C D E tau] 
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pfr.txt      plug flow trajectory from feed. Columns are [ A B C D E tau] 

cdsrxtr.txt  points on the DSR surface, Columns are [ A B C D E tau alpha] 

pfrhiways.txt manifolds of pfr trajectories starting from the DSR surface 

  Columns are [ A B C D E tau alpha] 

 

Space.txt all points in the space, (mess!) 

 

Tau – residence time 

Alpha – mixing policy value 

  If negative the point is a CSTR 

  Zero for a pfr 

  Any positive value for a DSR 

 

There is also a cdsrxtr.mat file attached which as matlab file containing binary data of the above. Abde4d  points on the DSR 

surface. Others have the same name as above. 

 

Extras are 

k - rate constants as in the reaction above 

alpha – constant alpha grid 

co – feed 

 

 

 

B.2  Follow-Up Document 

 

     Later, a document was received from Mr. Seodigeng clarifying the determination of the alpha policy 

used in DSR tractories.  Recall that alpha refers to the sidestream mixing policy for a differential 

sidestream reactor, or DSR.  This document is re-printed below. Again, it was received as personal 

communication, not as published copyrighted material.  No  changes, corrections, or additions were 

made to it. (TP) 
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The constant alpha story 

 

The original idea here was to take alpha values from the optimal alpha DSR and integrate them back as constant alpha DSRs 

(CADSRs) to see they terminate. This idea fell apart because the CADSRs can be tracked back into negative concentration 

space without showing any trends or whatsoever.  

  

Starting constant alpha DSRs from some extreme points, results in an envelope that closely delineates the optimal DSR. See 

figure 1. The extreme points where these constant alpha DSRs can start differ from system to system. For a Van de Vusse 

kinetics, the CSTR equilibrium point is a good starting point for the first optimal DSR.  (figure 1).  

 

I have derived some general guidelines on which extreme points to use depending on the system and we are still checking for 

the generality of these guidelines.    

 

 

 

Figure 1. 
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A few iterations and checking the rate vectors can end up with constant alpha DSRs touching the optimal DSR and falling back 

into the region.  

 

The cunvhull of the structure shows points from constant alpha DSRs lining along the optimal DSRs (see figure 2). This 

technique solves candidate ARs and delineates the optimal DSR also showing how alpha changes along the optimal DSR 

without solving complicated equations. The results agree with Feinberg’s optimal DSR.   

 

 

 

 

Figure 2 
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Below is the candidate AR for the Van de Vusse kinetics built using our technique (fig 3) 

 

Figure 3 

The candidate AR built using Feinberg’s optimal policy is shown below 

 

 

 

 

 

 

 

 

 

 

 

 



100 
 
 

  

 

 

 

figure 4 

 

I have implemented the algorithm in Matlab and generated the AR in runtime of 40seconds. The algorithm is faster (way faster) 

than the two previously developed by my co-researchers. More interesting is the generality of the technique and how easily it 

can be extended to systems with heat and mass transfer.   

 

With this technique I am building candidate ARs for more practical kinetics, for which optimal DSR equation cannot solved 

because complicated rate equations. I am currently working on Methane Steam Reforming using modified Xu and Froment 

kinetics. I hope we will work together on the visualisation of these study cases.  
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Appendix C:  Evaluation Survey 

 

     The following survey / questionnaire is to be used in the future for user evaluation of the 

application. 

 

Please circle the best answer to each question.  All responses are used strictly for the improvement of 

the application program and will remain confidential. Thank you for your cooperation. 

 

1. Rate your previous experience in computer operation and software applications in general. 

1 2 3 4 5 

beginner   expert 

2. Rate your previous experience with scientific visualization applications. 

   1 2 3 4 5 

   beginner   expert 

3. Rate your background knowledge in the field of attainable regions. 

   1 2 3 4 5 

   beginner   expert 

4. If you used the “.ard” file format to create or modify your own data file prior to reading it into the 

visualization, please comment on the file format.  If not, skip this question. 

   1 2 3 4 5 

   difficult    easy to use 

   1 2 3 4 5 

   too rigid    flexible 

   1 2 3 4 5 

   confusing    clearly documented 
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5. If you know what processor, processor speed, amount of RAM, or graphics card your system has, 

please provide any information known to you.  If not sure, skip to the next question. 

 Processor type and speed   ___________________________________ 

 Amount of memory (RAM)   ___________________________________ 

 Graphics card and video memory amount ___________________________________ 

6. Rate the performance of the program on your system. 

   1 2 3 4 5 

   slow     fast 

7. Is the layout of menus and toolbar buttons intelligible? 

   1 2 3 4 5 

   confusing    clear 

8. Comment on the usefulness of the online help system. 

   1 2 3 4 5 

   useless    helpful 

9. Rate the features in the scale values dialog box. 

   1 2 3 4 5 

   confusing    helpful 

10. Rate the features in the coordinate system properties dialog box. 

   1 2 3 4 5 

   confusing    clear 

11. Comment on the overall concept of dimension reduction as used in the program. (viewing a subset 

of dimensions at any one time) 

   1 2 3 4 5 

   confusing    clear 

   1 2 3 4 5 

    limited value   valuable 
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12. In terms of dimension reduction methods, do you think the sectioning method would be helpful or 

necessary, or is the projection method sufficient.  The sectioning method uses the “specified” values in 

the coordinate system properties dialog box, but is non-functional at this time. 

   1   2   3 

  sectioning is needed       not sure  projection is sufficient 

13. Rate the interactive panning, zooming, and rotating view controls. 

   1 2 3 4 5 

   difficult     easy 

14. Did the use of the program help you recognize patterns in your data and draw conclusions about 

the data? 

   1   2   3  

   no    somewhat  yes 

 

15. Comment on the overall goal of the project, which is to make high dimensional attainable region 

data comprehensible.   

   1 2 3 4 5 

   failed     succeeded 

16. Rate the usability of the tetrahedral coordinate system 

   1 2 3 4 5 

   not helpful    valuable 

 

16. Please feel free to add any additional comments, suggestions, questions, etc. in the space below 

or on the back: 

 

 

 

 



104 
 
 

  

Appendix D:  Derivation of Sample Problem 1 

 

     The following are the original notes of the derivation of various trajectories and surfaces for the first 

sample problem.  

 

D.1  CSTR Trajectory  

 

Referring to Fig. 1, p. 1639 of (Feinberg and Hildebrandt, 1997) first plot the CSTR trajectory from 

point F to point P.  

 

The defining equation of a CSTR is c – co = " r(c), (" is space-time) 

c1: 

c1 – c10 = " (-c1 – 20c1
2), where c10 is the initial value of c1, the feed point, 1 

c1 – 1 = " (-c1 – 20c1
2) 

0 = -20"c1
2  - "c1 – c1 + 1 

0 = 20"c1
2 + ("  + 1)c1 – 1 

from quadratic formula, c1 = [ -("+1) +/- sqrt( ("+1)2 – (4)(20")(-1) ) ]/ [(2)(20) "] 

since " >= 0, -("+1) < 0, so must use positive root to get c1 >= 0 

c1 = [ -("+1) + sqrt(  ("+1)2  + 80" ) ]  /  [40 "] 

c2: 

c2 – c20 = " (c1 – c2) 

c2 = "c1 / (1 + ")   (c1 is already known from above) 

c3: 

c3 – c30 = " ( 10c1
2) 

c3 = 10"c1
2
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c4: 

c4 – c40 = " c2 

c4 = "c2 

In Feinberg and Hildebrandt, point P is (c1 = .2236, c2=.0868, c3=.3172, c4 = .0552) with " =.6345 ; this 

coincides with our results. 

 

D.2  PFR trajectories from CSTR 

 
Next attempt to compute the PFR trajectory from point F to point Q 

For a PFR, dc/d" = r(c) 

c1 first: 

dc1 /d" = -c1 – 20c1
2 

$ dc1 / (-c1 – 20c1
2) = $ d" 

from calculus, $ dx / x(ax + b) = 1/b ln |(x / (ax + b)| + C 

a = -20, b = -1 

$ dc1 / (-c1 – 20c1
2) = -ln | c1 / (-20c1 – 1)| + C   (c1 >= 0 and  –20c1 – 1 < 0) 

=  -ln(c1 / (20c1 + 1)) + C = " 

ln(c1 / (20c1 + 1)) = C - " 

c1 / (20c1 + 1) = eC –
" 

c1 = 20c1eCe-
"
 + eCe-

" 

c1 = eCe-
" / (1 – 20eCe-

") 

at "=0, c1 = c10, so C = ln(c10 / (20c10 + 1))  where c10 is the initial value of c1 (in this case the feed  

point, but in the general case any point along the CSTR or DSR curve where a PFR trajectory could 

start from) 

Substituting in the initial conditions and simplifying,  

c1 = c10 / (20c10 + 1)e" – 20c10 
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However, computing c2, c3, and c4 became more difficult because the functions became difficult or 

impossible to integrate directly.  For example,  

dc3 / d" = 10c1
2  = 10 c10

2 / [(20c10 + 1)e" – 20c10]2 

Various integration methods such as substitution and integration by parts were attempted 

unsuccessfully. So, a differential equation solver called Polymath was used to compute the solutions, 

entering various initial conditions from the CSTR and DSR trajectory points and letting Polymath 

compute the points of the resulting PFR trajectories.  These points were produced by Polymath as one 

text file per trajectory, which the application then read and parsed to get the points. 

The system of ODE’s is: 

dc1 / d" = -c1 – 20c1
2  

dc2 / d" = c1 – c 

dc3 / d"  = 10 c1
2     

dc4 / d" = c2 

The ouput points are stored in files c0.txt – c21.txt in the data directory for the project.  

 

D.3  DSR Trajectory 

 

From (Feinberg, 2000), the governing equation of a DSR is 

dc/d" = r(c) + #(c) (c0 – c) 

where c0 is the side feed concentration, and #(c) is a function depending on the number of dimensions 

of c 

c0, the side feed concentration is (1,0,0), because the sample problem assumes an ample supply of 

the original feed supply is available to use as side feed (given) 
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The key is to find the critical #(c) function which will maximize the trajectory (ie, produce the trajectory 

lying in the AR, the so called critical DSR trajectory).  From Feinberg, this is: 

#(c) = c1 ( 20 c1
3 c2 – 80c1

2c2  - c1
2 + 37c1c2 + c1 + 2c2 ) / 2 (c1

2 – 2c1 + 1) c2 

for a 3-dimensional system.  Feinberg is using 3 dimensions for the sample problem because he is not 

interested in c4.  

The set of ODE’s which were entered into Polymath are therefore: 

dc1/d" = -c1 – 20c1
2  + #(c) (1 – c1) 

dc2/d" = c1 – c2  + #(c) (–c2) 

dc3/d" = 10c1
2  + #(c) (-c3) 

where #(c) is given above 

 

Derivation of c4 stoichiometrically:  By doing a mass balance on the system of chemical equations, we 

know that 

c1 + c2 + 2c3 + c4 = c1
feed = 1 

So, with c1,c2,c3 computed from Polymath and combined with c4 computed stoichiometrically, we arrive 

at the full 4 dimensional DSR curve. 

 

D.4  PFR Trajectories from DSR 

 
We used the same system of ODE’s in Polymath as in the PFR trajectories emanating from the CSTR 

curve to compute PFR trajectories emanating from the DSR curve. The initial conditions are simply 

now points from the DSR trajectory.  These points were outputted by Polymath as one text file per 

trajectory, which our application then read and parsed to get the points. 
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The system of ODE’s we used is: 

dc1 / d" = -c1 – 20c1
2  

dc2 / d" = c1 – c2 

dc3 / d"  = 10 c1
2     

dc4 / d" = c2 

The output points are stored in files d0.txt – d25.txt in the data directory for the project.  
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